IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019706.html
   My bibliography  Save this article

Significantly enhanced energy efficiency through reflective materials integration in plant factories with artificial light

Author

Listed:
  • Cai, Wenyi
  • Li, Saiya
  • Zha, Lingyan
  • He, Junyi
  • Zhang, Jingjin
  • Bao, Hua

Abstract

Plant factory with artificial light (PFAL) based on vertical farming is a promising technology for resource-efficient plant production, especially in urban areas or arid regions. However, the lighting system of PFAL requires a large amount of energy, which makes the total energy cost much higher than open-field and greenhouse farming. To address this issue, in this work, a cultivation system integrated with highly reflective materials is demonstrated in PFAL, which reduces light energy consumption by more than 36 %. A low-cost reflective film is fabricated with an overall reflectivity of 96.5 % in the entire photosynthetically active radiation spectrum. The effectiveness of this reflective film in reducing energy consumption is further demonstrated with optical simulation analysis and the corresponding computational fluid dynamics simulation based on an experimental cultivation rack. The corresponding field experiments of 3 different types of lettuce, Crunchy, Butterhead and Grand Rapids, under different light intensities are conducted in the cultivation unit. With reflective film properly installed, a 36 % reduction of light energy consumption is demonstrated while the dry weight and fresh weight still increase. An additional benefit is that the light reception area of lettuce becomes larger due to the more uniform lighting with the integration of reflective material. This work presents a simple yet reliable strategy for enhancing the energy efficiency in PFAL systems and can achieve the cost-effective daily production of lettuce with significantly reduced energy input.

Suggested Citation

  • Cai, Wenyi & Li, Saiya & Zha, Lingyan & He, Junyi & Zhang, Jingjin & Bao, Hua, 2025. "Significantly enhanced energy efficiency through reflective materials integration in plant factories with artificial light," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019706
    DOI: 10.1016/j.apenergy.2024.124587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rao Kuang & Nangui Fan & Weifeng Zhang & Song Gan & Xiaomin Zhou & Heyi Huang & Yijun Shen, 2022. "Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    2. Jiang, Joe-Air & Su, Yu-Li & Shieh, Jyh-Cherng & Kuo, Kun-Chang & Lin, Tzu-Shiang & Lin, Ta-Te & Fang, Wei & Chou, Jui-Jen & Wang, Jen-Cheng, 2014. "On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory," Applied Energy, Elsevier, vol. 124(C), pages 309-324.
    3. Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Wenyi & Bu, Kunlang & Zha, Lingyan & Zhang, Jingjin & Lai, Dayi & Bao, Hua, 2025. "Energy consumption of plant factory with artificial light: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wenyi & Bu, Kunlang & Zha, Lingyan & Zhang, Jingjin & Lai, Dayi & Bao, Hua, 2025. "Energy consumption of plant factory with artificial light: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    2. Yorifuji, Ryota & Obara, Shin'ya, 2022. "Economic design of artificial light plant factories based on the energy conversion efficiency of biomass," Applied Energy, Elsevier, vol. 305(C).
    3. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
    4. Yeweon Kim & Hye-Ry Shin & Su-hyun Oh & Ki-Hyung Yu, 2022. "Analysis on the Economic Feasibility of a Plant Factory Combined with Architectural Technology for Energy Performance Improvement," Agriculture, MDPI, vol. 12(5), pages 1-11, May.
    5. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    8. Bożena Matysiak & Stanisław Kaniszewski & Jacek Dyśko & Waldemar Kowalczyk & Artur Kowalski & Maria Grzegorzewska, 2021. "The Impact of LED Light Spectrum on the Growth, Morphological Traits, and Nutritional Status of ‘Elizium’ Romaine Lettuce Grown in an Indoor Controlled Environment," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    9. Jiang, Joe-Air & Su, Yu-Li & Kuo, Kun-Chang & Wang, Chien-Hao & Liao, Min-Sheng & Wang, Jen-Cheng & Huang, Chen-Kang & Chou, Cheng-Ying & Lee, Chien-Hsing & Shieh, Jyh-Cherng, 2017. "On a hybrid MPPT control scheme to improve energy harvesting performance of traditional two-stage inverters used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1113-1128.
    10. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    11. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    13. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    14. Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    15. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    16. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    17. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    18. Talbot, Marie-Hélène & Monfet, Danielle, 2024. "Analysing the influence of growing conditions on both energy load and crop yield of a controlled environment agriculture space," Applied Energy, Elsevier, vol. 368(C).
    19. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.