IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1324-d1031184.html
   My bibliography  Save this article

Evaluating the Economic Feasibility of Plant Factory Scenarios That Produce Biomass for Biorefining Processes

Author

Listed:
  • Heino Pesch

    (Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Louis Louw

    (Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

The use of a plant factory is typically associated with the cultivation of edible biomass for local markets within the urban environment and leads to economic feasibility being evaluated in this context. This paper explored the use of plant factories to produce biomass and value-added compounds for the biorefining industry to help frame the debate regarding the expansion of plant factory applicability to the greater biorefining value chain. Information regarding plant factory technology, crop selection for biorefining markets, and the industrial integration potential of plant factories was used to evaluate the economic feasibility of theoretical plant factory scenarios. From these scenarios, it was shown that plant factories showed economic feasibility while serving the food market and had significant potential in the biopharmaceutical market when accumulating adequate levels of biopharmaceutical products within the plants grown in the plant factories. These results suggested economic feasibility beyond the food market by selecting appropriate crops, based on plant factory and end-user market demands, and value-added compounds which could be accumulated in economically viable quantities.

Suggested Citation

  • Heino Pesch & Louis Louw, 2023. "Evaluating the Economic Feasibility of Plant Factory Scenarios That Produce Biomass for Biorefining Processes," Sustainability, MDPI, vol. 15(2), pages 1-36, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1324-:d:1031184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amigun, Bamikole & Petrie, Daniel & Görgens, Johann, 2011. "Economic risk assessment of advanced process technologies for bioethanol production in South Africa: Monte Carlo analysis," Renewable Energy, Elsevier, vol. 36(11), pages 3178-3186.
    2. Yiming Shao & Tim Heath & Yan Zhu, 2016. "Developing an Economic Estimation System for Vertical Farms," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 7(2), pages 26-51, April.
    3. Anctil, Annick & Lee, Eunsang & Lunt, Richard R., 2020. "Net energy and cost benefit of transparent organic solar cells in building-integrated applications," Applied Energy, Elsevier, vol. 261(C).
    4. Hu, Ming-Che & Chen, Yu-Hui & Huang, Li-Chun, 2014. "A sustainable vegetable supply chain using plant factories in Taiwanese markets: A Nash–Cournot model," International Journal of Production Economics, Elsevier, vol. 152(C), pages 49-56.
    5. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    6. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    7. Muller, A. & Ferré, M. & Engel, S. & Gattinger, A. & Holzkämper, A. & Huber, R. & Müller, M. & Six, J., 2017. "Can soil-less crop production be a sustainable option for soil conservation and future agriculture?," Land Use Policy, Elsevier, vol. 69(C), pages 102-105.
    8. Salinee Santiteerakul & Apichat Sopadang & Korrakot Yaibuathet Tippayawong & Krisana Tamvimol, 2020. "The Role of Smart Technology in Sustainable Agriculture: A Case Study of Wangree Plant Factory," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    9. repec:igg:jdsst0:v:13:y:2021:i:1:p:34-66 is not listed on IDEAS
    10. Zhang, Fengli & Johnson, Dana M. & Johnson, Mark A., 2012. "Development of a simulation model of biomass supply chain for biofuel production," Renewable Energy, Elsevier, vol. 44(C), pages 380-391.
    11. Goodman, Wylie & Minner, Jennifer, 2019. "Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City," Land Use Policy, Elsevier, vol. 83(C), pages 160-173.
    12. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    13. Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
    14. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    15. Souza, Sulma Vanessa & Gimenes, Régio Marcio Toesca & Binotto, Erlaine, 2019. "Economic viability for deploying hydroponic system in emerging countries: A differentiated risk adjustment proposal," Land Use Policy, Elsevier, vol. 83(C), pages 357-369.
    16. Francis J. Baumont de Oliveira & Scott Ferson & Ronald A. D. Dyer & Jens M. H. Thomas & Paul D. Myers & Nicholas G. Gray, 2022. "How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    17. Idiano D’Adamo & Massimo Gastaldi & Piergiuseppe Morone & Paolo Rosa & Claudio Sassanelli & Davide Settembre-Blundo & Yichen Shen, 2021. "Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications," Sustainability, MDPI, vol. 14(1), pages 1-7, December.
    18. Hyunseung Hwang & Sewoong An & Minh Duy Pham & Meiyan Cui & Changhoo Chun, 2020. "The Combined Conditions of Photoperiod, Light Intensity, and Air Temperature Control the Growth and Development of Tomato and Red Pepper Seedlings in a Closed Transplant Production System," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    19. Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Silvio Matassa & Giovanni Esposito & Francesco Pirozzi & Stefano Papirio, 2020. "Exploring the Biomethane Potential of Different Industrial Hemp ( Cannabis sativa L.) Biomass Residues," Energies, MDPI, vol. 13(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    2. Dsouza, Ajwal & Newman, Lenore & Graham, Thomas & Fraser, Evan D.G., 2023. "Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics," Agricultural Systems, Elsevier, vol. 209(C).
    3. Dimitra I. Pomoni & Maria K. Koukou & Michail Gr. Vrachopoulos & Labros Vasiliadis, 2023. "A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use," Energies, MDPI, vol. 16(4), pages 1-26, February.
    4. Xu, Zhitao & Elomri, Adel & Al-Ansari, Tareq & Kerbache, Laoucine & El Mekkawy, Tarek, 2022. "Decisions on design and planning of solar-assisted hydroponic farms under various subsidy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    6. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    7. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    8. Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    10. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    11. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    12. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    13. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    14. Yorifuji, Ryota & Obara, Shin'ya, 2022. "Economic design of artificial light plant factories based on the energy conversion efficiency of biomass," Applied Energy, Elsevier, vol. 305(C).
    15. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    16. Andrés Fernández-Miguel & Maria Pia Riccardi & Valerio Veglio & Fernando E. García-Muiña & Alfonso P. Fernández del Hoyo & Davide Settembre-Blundo, 2022. "Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    17. Luiza Vigne Bennedetti & Paulo Antônio de Almeida Sinisgalli & Maurício Lamano Ferreira & Fabiano Lemes de Oliveira, 2023. "Challenges to Promote Sustainability in Urban Agriculture Models: A Review," IJERPH, MDPI, vol. 20(3), pages 1-14, January.
    18. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    19. Anup Kumar & Santosh Kumar Shrivastav & Avinash K. Shrivastava & Rashmi Ranjan Panigrahi & Abbas Mardani & Fausto Cavallaro, 2023. "Sustainable Supply Chain Management, Performance Measurement, and Management: A Review," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    20. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1324-:d:1031184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.