IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1240-d1030002.html
   My bibliography  Save this article

Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase

Author

Listed:
  • Heino Pesch

    (Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Louis Louw

    (Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

Plant factories can be described as structures that facilitate the indoor cultivation of crops and are typically considered to be closed-loop (isolated) systems which are situated within the urban environment. This paper explores the extent to which external industries can be integrated with plant factories by defining an open-loop (integrated) plant factory system boundary. A multi-criteria decision-support process was developed and included the use of a mixed-indicator assessment method and the use of fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to account for the uncertainty associated with indicator-based assessment methods. The assessment of theoretical industrial symbiosis scenarios showed that the fuzzy TOPSIS ranking provided a clearer hierarchy of optimal scenarios, when compared to using the indicator rankings. The novelty of the paper included the clear illustration of the points of integration between plant factories and external industries, which can be used to identify alternative integration scenarios in the future. Furthermore, this paper provided detailed descriptions and motivations of the indicator scoring of theoretical industrial symbiosis scenarios so that the early phase assessment method can be used beyond the scope of this paper and can be expanded with more well-defined indicators in the future.

Suggested Citation

  • Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1240-:d:1030002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiming Shao & Tim Heath & Yan Zhu, 2016. "Developing an Economic Estimation System for Vertical Farms," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 7(2), pages 26-51, April.
    2. Anctil, Annick & Lee, Eunsang & Lunt, Richard R., 2020. "Net energy and cost benefit of transparent organic solar cells in building-integrated applications," Applied Energy, Elsevier, vol. 261(C).
    3. Hu, Ming-Che & Chen, Yu-Hui & Huang, Li-Chun, 2014. "A sustainable vegetable supply chain using plant factories in Taiwanese markets: A Nash–Cournot model," International Journal of Production Economics, Elsevier, vol. 152(C), pages 49-56.
    4. Ferenc Bognár & Petra Benedek, 2022. "A Novel AHP-PRISM Risk Assessment Method—An Empirical Case Study in a Nuclear Power Plant," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    5. Salinee Santiteerakul & Apichat Sopadang & Korrakot Yaibuathet Tippayawong & Krisana Tamvimol, 2020. "The Role of Smart Technology in Sustainable Agriculture: A Case Study of Wangree Plant Factory," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    6. Johan Du Plessis & Wouter Bam, 2018. "Comparing the Sustainable Development Potential of Industries: A Role for Sustainability Disclosures?," Sustainability, MDPI, vol. 10(3), pages 1-30, March.
    7. Khan, Feroz & Ali, Yousaf, 2022. "Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country," Ecological Economics, Elsevier, vol. 196(C).
    8. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    9. Gentry, Matthew, 2019. "Local heat, local food: Integrating vertical hydroponic farming with district heating in Sweden," Energy, Elsevier, vol. 174(C), pages 191-197.
    10. Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
    11. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    12. Francis J. Baumont de Oliveira & Scott Ferson & Ronald A. D. Dyer & Jens M. H. Thomas & Paul D. Myers & Nicholas G. Gray, 2022. "How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    13. Daniele Cecconet & Jakub Raček & Arianna Callegari & Petr Hlavínek, 2019. "Energy Recovery from Wastewater: A Study on Heating and Cooling of a Multipurpose Building with Sewage-Reclaimed Heat Energy," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    14. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    15. Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Ferenc Bognár & Balázs Szentes & Petra Benedek, 2022. "Development of the PRISM Risk Assessment Method Based on a Multiple AHP-TOPSIS Approach," Risks, MDPI, vol. 10(11), pages 1-16, November.
    17. O'Sullivan, C.A. & Bonnett, G.D. & McIntyre, C.L. & Hochman, Z. & Wasson, A.P., 2019. "Strategies to improve the productivity, product diversity and profitability of urban agriculture," Agricultural Systems, Elsevier, vol. 174(C), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyang Chen & Xue Dong & Jie Lei & Ning Zhang & Qianrui Wang & Zhiang Shi & Jinxing Yang, 2024. "Life Cycle Assessment of Carbon Capture by an Intelligent Vertical Plant Factory within an Industrial Park," Sustainability, MDPI, vol. 16(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heino Pesch & Louis Louw, 2023. "Evaluating the Economic Feasibility of Plant Factory Scenarios That Produce Biomass for Biorefining Processes," Sustainability, MDPI, vol. 15(2), pages 1-36, January.
    2. Xu, Zhitao & Elomri, Adel & Al-Ansari, Tareq & Kerbache, Laoucine & El Mekkawy, Tarek, 2022. "Decisions on design and planning of solar-assisted hydroponic farms under various subsidy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    4. Dsouza, Ajwal & Newman, Lenore & Graham, Thomas & Fraser, Evan D.G., 2023. "Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics," Agricultural Systems, Elsevier, vol. 209(C).
    5. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Kai Wang & Zhe Wang & Jun Deng & Yuanyuan Feng & Quanfang Li, 2022. "Study on the Evaluation of Emergency Management Capacity of Resilient Communities by the AHP-TOPSIS Method," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    7. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    8. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).
    9. Aamir Mehmood Shah & Gengyuan Liu & Fanxin Meng & Qing Yang & Jingyan Xue & Stefano Dumontet & Renato Passaro & Marco Casazza, 2021. "A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus," Energies, MDPI, vol. 14(15), pages 1-24, July.
    10. Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    12. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    13. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    14. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    15. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    16. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    17. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    18. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    19. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    20. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1240-:d:1030002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.