IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics0306261923005627.html
   My bibliography  Save this article

Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking

Author

Listed:
  • Superchi, Francesco
  • Mati, Alessandro
  • Carcasci, Carlo
  • Bianchini, Alessandro

Abstract

Green hydrogen is among the most promising energy vectors that may enable the decarbonization of our society. The present study addresses the decarbonization of hard-to-abate sectors via the deployment of sustainable alternatives to current technologies and processes where the complete replacement of fossil fuels is deemed not nearly immediate. In particular, the investigated case study tackles the emission reduction potential of steelmaking in the Italian industrial framework via the implementation of dedicated green hydrogen production systems to feed Hydrogen Direct Reduction process, the main alternative to the traditional polluting routes towards emissions abatement. Green hydrogen is produced via the coupling of an onshore wind farm with lithium-ion batteries, alkaline type electrolyzers and the interaction with the electricity grid. Building on a power generation dataset from a real utility-scale wind farm, techno-economic analyses are carried out for a large number of system configurations, varying components size and layout to assess its performance on the basis of two main key parameters, the levelized cost of hydrogen (LCOH) and the Green Index (GI), the latter presented for the first time in this study. The optimal system design and operation logics are investigated accounting for the necessity of providing a constant mass flow rate of H2 and thus considering the interaction with the electricity network instead of relying solely on RES surplus. In-house-developed models that account for performances degradation over time of different technologies are adapted and used for the case study. The effect of different storage technologies is evaluated via a sensitivity analysis on different components and electricity pricing strategy to understand how to favour green hydrogen penetration in the heavy industry. Furthermore, for a better comprehension and contextualization of the proposed solutions, their emission-reduction potential is quantified and presented in comparison with the current scenario of EU-27 countries. In the optimal case, the emission intensity related to the steelmaking process can be lowered to 235 kg of CO2 per ton of output steel, 88 % less than the traditional route. A higher cost of the process must be accounted, resulting in an LCOH of such solutions around 6.5 €/kg.

Suggested Citation

  • Superchi, Francesco & Mati, Alessandro & Carcasci, Carlo & Bianchini, Alessandro, 2023. "Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005627
    DOI: 10.1016/j.apenergy.2023.121198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    3. Anamika & Madhumita Chakraborty & Sowmya Subramaniam, 2023. "Does Sentiment Impact Cryptocurrency?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(2), pages 202-218, April.
    4. Rayhan & M. Abdullah-Al-Wadud & M. Helal Uddin Ahmed, 2023. "Assessing the global impact of COVID-19 vaccination," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(1), pages 478-484, January.
    5. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    6. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    7. Andrea Mannelli & Francesco Papi & George Pechlivanoglou & Giovanni Ferrara & Alessandro Bianchini, 2021. "Discrete Wavelet Transform for the Real-Time Smoothing of Wind Turbine Power Using Li-Ion Batteries," Energies, MDPI, vol. 14(8), pages 1-32, April.
    8. Dao, Thien Ly & Le, Thai-Ha & Tran-Nam , Binh, 2023. "Impacts of Loan Support Policy on Farm Income in Vietnam," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 48(2), pages 53-81, June.
    9. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    10. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    11. Yuzhen Ma & Xinyang Wei & Gaoyun Yan & Xiaoyu He, 2023. "The Impact of Fintech Development on Air Pollution," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    12. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jihao & Zhang, Xinqi & Zhang, Haoran & Wang, Qiliang & Yan, Jinyue & Xiao, Linda, 2024. "Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning," Applied Energy, Elsevier, vol. 361(C).
    2. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    3. Julián Gómez & Rui Castro, 2024. "Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System," Energies, MDPI, vol. 17(13), pages 1-41, June.
    4. Mustafa Jaradat & Sondos Almashaileh & Codruta Bendea & Adel Juaidi & Gabriel Bendea & Tudor Bungau, 2024. "Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments," Energies, MDPI, vol. 17(16), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    2. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    3. Baldi, Francesco & Coraddu, Andrea & Kalikatzarakis, Miltiadis & Jeleňová, Diana & Collu, Maurizio & Race, Julia & Maréchal, François, 2022. "Optimisation-based system designs for deep offshore wind farms including power to gas technologies," Applied Energy, Elsevier, vol. 310(C).
    4. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    6. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    10. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    13. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    14. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    15. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2023. "Two-timescale autonomous energy management strategy based on multi-agent deep reinforcement learning approach for residential multicarrier energy system," Applied Energy, Elsevier, vol. 351(C).
    17. Shirizadeh, Behrang & Quirion, Philippe, 2023. "Long-term optimization of the hydrogen-electricity nexus in France: Green, blue, or pink hydrogen?," Energy Policy, Elsevier, vol. 181(C).
    18. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    20. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.