IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006518.html
   My bibliography  Save this article

Optimizing hybrid energy systems for remote Australian communities: The role of tilt angle in cost-effective green hydrogen production

Author

Listed:
  • Roy, Tushar Kanti
  • Saha, Sajeeb
  • Oo, Amanullah Maung Than

Abstract

This study investigates hybrid energy systems (HESs) integrating photovoltaic (PV) panels, batteries, fuel cells (FCs), electrolyzers (ELs), and hydrogen tanks (HTs) to address the energy needs of remote Australian communities. Two configurations are analyzed: Type-A (PV/Batt/FC/EL/HT) and Type-B (PV/FC/EL/HT), focusing on cost-efficiency, energy reliability, and hydrogen production. Several optimization techniques, including the cuckoo search algorithm, non-dominated sorting genetic algorithm-II (NSGA-II), and sequential quadratic programming algorithm (SQPA), flower pollination algorithm, constrained PSO, and harmony search algorithm, are employed to determine optimal system configurations. Type-A emerges as the most cost-effective configuration when optimized with NSGA-II, achieving a net present cost (NPC) of $226,500, a levelized cost of electricity (LCOE) of $0.193/kWh, and a levelized cost of hydrogen (LCOH) of $4.88/kg. Battery integration in Type-A enhances both cost-efficiency and energy reliability. For hydrogen-focused applications, SQPA yields the highest hydrogen production at 4737 kg/year, supported by higher EL (14 kW) and FC (18.63 kW) capacities. System efficiency is found to be highly sensitive to PV tilt angle, with 30∘ identified as optimal. Increasing the tilt to 70∘ can raise system costs by up to 75 %. Sensitivity analyses reveal that improving component efficiencies dramatically impacts costs. For example, increasing fuel cell efficiency from 40 % to 60 % reduces NPC, LCOE, and LCOH by $40,000, $0.04/kWh, and $0.1/kg, respectively, especially in Type-A systems. Collectively, adjustments to PV tilt angles and component efficiencies can reduce overall costs by up to 40 %. These insights offer a strategic foundation for designing HESs that balance electricity and hydrogen generation, tailored for sustainable operation in off-grid and remote settings.

Suggested Citation

  • Roy, Tushar Kanti & Saha, Sajeeb & Oo, Amanullah Maung Than, 2025. "Optimizing hybrid energy systems for remote Australian communities: The role of tilt angle in cost-effective green hydrogen production," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006518
    DOI: 10.1016/j.apenergy.2025.125921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.