IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005239.html
   My bibliography  Save this article

Multi-objective and multi-stage capacity planning for low-carbon iron and steel industry empowered by wind-gas‑hydrogen energy

Author

Listed:
  • Wu, Haotian
  • Ke, Deping
  • Song, Lin
  • Xu, Jian
  • Liao, Siyang
  • Wang, Lei

Abstract

The decarbonization transition of the iron and steel industry (ISI) necessitates an overshooting of its energy mix from a predominantly coal-consuming to a predominantly renewable energy-consuming one, including wind and hydrogen. This also presents novel challenges to the energy economy, efficiency, and flexibility of low-carbon ISI. To overcome this challenge, this paper proposes a multi-objective and multi-stage planning (MSP) model for ISI coupled with multi-energy forms. The MSP strategy, which considers the stage-adjustable hydrogen proportion (H2-CO ratio) used in iron production, is proposed as a means of fully considering energy development at different stages to make optimal equipment configuration. Moreover, a multi-objective capacity planning model is developed to establish energy economic, efficiency and flexibility objectives based on the actual energy policies implemented in China. Finally, an enhanced AUGMECON-R algorithm (EARA) is devised to address the bilinear constraints inherent to the model, thereby facilitating an efficient solution process. The simulation results substantiate the efficacy of the MSP strategy, illustrate the substantial value of the stage-plannable H2-CO ratio for ISI's economy and flexibility enhancement, and demonstrate that EARA can markedly enhance solution efficiency while maintaining an acceptable level of accuracy.

Suggested Citation

  • Wu, Haotian & Ke, Deping & Song, Lin & Xu, Jian & Liao, Siyang & Wang, Lei, 2025. "Multi-objective and multi-stage capacity planning for low-carbon iron and steel industry empowered by wind-gas‑hydrogen energy," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005239
    DOI: 10.1016/j.apenergy.2025.125793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Beuzekom, Iris & Hodge, Bri-Mathias & Slootweg, Han, 2021. "Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems," Applied Energy, Elsevier, vol. 292(C).
    2. Superchi, Francesco & Mati, Alessandro & Carcasci, Carlo & Bianchini, Alessandro, 2023. "Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking," Applied Energy, Elsevier, vol. 342(C).
    3. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    4. Alla Toktarova & Lisa Göransson & Filip Johnsson, 2021. "Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition," Energies, MDPI, vol. 14(24), pages 1-21, December.
    5. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    7. Richardson-Barlow, Clare & Pimm, Andrew J. & Taylor, Peter G. & Gale, William F., 2022. "Policy and pricing barriers to steel industry decarbonisation: A UK case study," Energy Policy, Elsevier, vol. 168(C).
    8. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    9. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    10. Sheng, Kangling & Wang, Xiaojun & Si, Fangyuan & Zhou, Yue & Liu, Zhao & Hua, Haochen & Wang, Xihao & Duan, Yuge, 2024. "Rational capacity investment for renewable hydrogen-based steelmaking systems: A multi-stage expansion planning strategy," Applied Energy, Elsevier, vol. 372(C).
    11. Weiss, Robert & Ikäheimo, Jussi, 2024. "Flexible industrial power-to-X production enabling large-scale wind power integration: A case study of future hydrogen direct reduction iron production in Finland," Applied Energy, Elsevier, vol. 365(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Haotian & Ke, Deping & Xu, Jian & Song, Lin & Liao, Siyang & Zhang, Pengcheng, 2025. "Low-carbon economic dispatch of iron and steel industry empowered by wind‑hydrogen energy: Modeling and stochastic programming," Applied Energy, Elsevier, vol. 387(C).
    2. Weiss, Robert & Ikäheimo, Jussi, 2024. "Flexible industrial power-to-X production enabling large-scale wind power integration: A case study of future hydrogen direct reduction iron production in Finland," Applied Energy, Elsevier, vol. 365(C).
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    4. Su, Pengfei & Zhou, Yue & Li, Hongyi & Perez, Hector D. & Wu, Jianzhong, 2025. "Cost-effective scheduling of a hydrogen-based iron and steel plant powered by a grid-assisted renewable energy system," Applied Energy, Elsevier, vol. 384(C).
    5. Superchi, Francesco & Moustakis, Antonis & Pechlivanoglou, George & Bianchini, Alessandro, 2025. "On the importance of degradation modeling for the robust design of hybrid energy systems including renewables and storage," Applied Energy, Elsevier, vol. 377(PD).
    6. Raillard--Cazanove, Quentin & Rogeau, Antoine & Girard, Robin, 2025. "Decarbonisation modelling for key industrial sectors focusing on process changes in a cost-optimised pathway," Applied Energy, Elsevier, vol. 382(C).
    7. Sheng, Kangling & Wang, Xiaojun & Si, Fangyuan & Zhou, Yue & Liu, Zhao & Hua, Haochen & Wang, Xihao & Duan, Yuge, 2024. "Rational capacity investment for renewable hydrogen-based steelmaking systems: A multi-stage expansion planning strategy," Applied Energy, Elsevier, vol. 372(C).
    8. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Khaled Alshehri & Mohadese Basirati & Devin Sapsford & Michael Harbottle & Peter Cleall, 2024. "Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    10. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    11. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    12. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
    13. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    14. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    15. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    16. Nasser, Mohamed, 2025. "Biomass valorization in green hydrogen production, storage and transportation using low and high-temperature water electrolyzers: A thermo-economic approach," Energy, Elsevier, vol. 319(C).
    17. Tian, Zhe & Wang, Yi & Li, Xiaoyuan & Wen, Li & Niu, Jide & Lu, Yakai, 2024. "Typical daily scenario extraction method based on key features to promote building renewable energy system optimization efficiency," Renewable Energy, Elsevier, vol. 236(C).
    18. Wang, Meng & Zheng, J.H. & Li, Zhigang & Wu, Q.H., 2022. "Multi-attribute decision analysis for optimal design of park-level integrated energy systems based on load characteristics," Energy, Elsevier, vol. 254(PA).
    19. Weiyi Jiang & Taeyong Jung & Hancheng Dai & Pianpian Xiang & Sha Chen, 2025. "Transition Pathways for Low-Carbon Steel Manufacture in East Asia: The Role of Renewable Energy and Technological Collaboration," Sustainability, MDPI, vol. 17(10), pages 1-14, May.
    20. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.