IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003222.html
   My bibliography  Save this article

Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning

Author

Listed:
  • Shi, Jihao
  • Zhang, Xinqi
  • Zhang, Haoran
  • Wang, Qiliang
  • Yan, Jinyue
  • Xiao, Linda

Abstract

Leak fault significantly affects the reliable and sustainable green hydrogen energy supply by renewable Power-to-Hydrogen (P2H2) system. Deep learning has been widely applied to automated leak fault detection and diagnosis of hydrogen systems. However, due to the intermittency of wind/solar-power-generation, existing approaches developed by monitored signals have the bad generalization to leak scenario under large volatility of power-to‑hydrogen production. This study introduces graph deep probability learning approach, in which an attention-based graph neural network (GNN) learns the dependency between installed sensors. Variational inference is integrated to model posterior distribution of sensor dependencies, by using which the leak fault under large volatility of power-to‑hydrogen production is detected and localized by using normal time-series signals under different timeslots of one day as training data. Experiment of hydrogen leak faults from P2H2 system is conducted to verify the more accuracy of proposed approach compared to 6 state-of-the-art approaches. Results demonstrated our proposed approach detects the leak fault more accurately with a higher AUC of 0.96 and successfully localizes all the leak faults. This study supports more reliable and efficient safety monitoring for upcoming renewable P2H2 system in future.

Suggested Citation

  • Shi, Jihao & Zhang, Xinqi & Zhang, Haoran & Wang, Qiliang & Yan, Jinyue & Xiao, Linda, 2024. "Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003222
    DOI: 10.1016/j.apenergy.2024.122939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.