IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics030626192300315x.html
   My bibliography  Save this article

Integrated LCA and DEA approach for circular economy-driven performance evaluation of wind turbine end-of-life treatment options

Author

Listed:
  • Gennitsaris, Stavros
  • Sagani, Angeliki
  • Sofianopoulou, Stella
  • Dedoussis, Vassilis

Abstract

The purpose of this paper is to present an integrated joint application of Life Cycle Analysis (LCA) and Data Envelopment Analysis (DEA) in order to evaluate the efficiency of different end-of-life treatment options for wind turbine decommissioning, considering, technological, economic, and environmental aspects in a circular economy context. Eleven scenarios have been configurated concerning the material waste management of a representative type of wind turbine operating in Greece. Mechanical recycling, landfill disposal and advanced thermal recycling technologies, such as conventional or microwave pyrolysis are addressed. The proposed approach does not only evaluate the efficiency of each one of the different end-of-life treatment processes relative to one another, but it also suggests circular economy-driven policy-making scenarios towards more sustainable waste management in the country. Real-world data calculations indicate that improving the performance of the energy-intensive thermal recycling process could maximize the environmental benefits. Α circular zero-waste approach based on remanufacturing, repurposing or waste prevention through design-for-recycling of wind turbine blades, could also favor long-term sustainability.

Suggested Citation

  • Gennitsaris, Stavros & Sagani, Angeliki & Sofianopoulou, Stella & Dedoussis, Vassilis, 2023. "Integrated LCA and DEA approach for circular economy-driven performance evaluation of wind turbine end-of-life treatment options," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s030626192300315x
    DOI: 10.1016/j.apenergy.2023.120951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300315X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    3. Majewski, Peter & Florin, Nick & Jit, Joytishna & Stewart, Rodney A., 2022. "End-of-life policy considerations for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Zhang, Ruchuan & Wei, Qian & Li, Aijun & Ren, LiYing, 2022. "Measuring efficiency and technology inequality of China's electricity generation and transmission system: A new approach of network Data Envelopment Analysis prospect cross-efficiency models," Energy, Elsevier, vol. 246(C).
    5. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Xue, Bing & Ma, Zhixiao & Geng, Yong & Heck, Peter & Ren, Wanxia & Tobias, Mario & Maas, Achim & Jiang, Ping & Puppim de Oliveira, Jose A. & Fujita, Tsuyoshi, 2015. "A life cycle co-benefits assessment of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 338-346.
    8. Zhong, Z.W. & Song, B. & Loh, P.E., 2011. "LCAs of a polycrystalline photovoltaic module and a wind turbine," Renewable Energy, Elsevier, vol. 36(8), pages 2227-2237.
    9. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    10. Ebbe Bagge Paulsen & Peter Enevoldsen, 2021. "A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades," Energies, MDPI, vol. 14(14), pages 1-13, July.
    11. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    12. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    13. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    14. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    15. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.
    16. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    17. Lam, Chor Man & Hsu, Shu-Chien & Alvarado, Valeria & Li, Wing Man, 2020. "Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems," Applied Energy, Elsevier, vol. 266(C).
    18. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    19. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    20. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahraossadat Alavi & Kaveh Khalilpour & Nick Florin, 2024. "Forecasting End-of-Life Wind Turbine Material Flows in Australia under Various Wind Energy Deployment Scenarios," Energies, MDPI, vol. 17(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    2. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    3. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    4. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    5. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    6. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    7. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    8. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    9. Corrado Lo Storto, 2016. "Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method," Sustainability, MDPI, vol. 8(2), pages 1-29, January.
    10. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    11. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    12. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    13. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    14. Cordero, José Manuel & Alonso-Morán, Edurne & Nuño-Solinis, Roberto & Orueta, Juan F. & Arce, Regina Sauto, 2015. "Efficiency assessment of primary care providers: A conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 235-244.
    15. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    16. Margaréta Halická & Mária Trnovská, 2018. "Negative features of hyperbolic and directional distance models for technologies with undesirable outputs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 887-907, December.
    17. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    18. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    19. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    20. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s030626192300315x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.