IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5365-d1421065.html
   My bibliography  Save this article

Life Cycle Environmental Impacts of Wind Turbines: A Path to Sustainability with Challenges

Author

Listed:
  • Burcin Atilgan Turkmen

    (Chemical Engineering Department, Bilecik Seyh Edebali University, Bilecik 11230, Turkey)

  • Fatos Germirli Babuna

    (Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Turkey)

Abstract

This study aims to evaluate in detail the environmental impacts of the turbines used for electricity generation by wind energy, from a life cycle perspective. For this purpose, a comprehensive literature review is conducted and the life cycle environmental impacts of two sizes of wind turbines, namely 3.6 and 4.8 MW, in Turkey are analyzed. Sustainability studies, especially life cycle assessment (LCA) findings, yield healthy results only if the data used are site-specific. The system has been modeled using GaBi software and the Ecoinvent database. The functional unit is defined as 1 kWh of generated electricity. The impacts have been estimated using the CML 2 Baseline 2001 method. The 4.8 MW turbine has lower environmental impacts than the other turbine. The construction of wind turbines has the greatest share of the environmental impacts of all the options considered. Recycling materials at the end of plant life can reduce unwanted environmental impacts by up to 49%. Similar studies based on site-specific data will help to inform electricity producers and policymakers about wind energy’s current impacts and environmental hotspots. Conducting analogous studies is critical to reducing the environmental impacts of wind energy, which will play an important part in the future of the energy sector.

Suggested Citation

  • Burcin Atilgan Turkmen & Fatos Germirli Babuna, 2024. "Life Cycle Environmental Impacts of Wind Turbines: A Path to Sustainability with Challenges," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5365-:d:1421065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    2. Atilgan, Burcin & Azapagic, Adisa, 2016. "Renewable electricity in Turkey: Life cycle environmental impacts," Renewable Energy, Elsevier, vol. 89(C), pages 649-657.
    3. Gennitsaris, Stavros & Sagani, Angeliki & Sofianopoulou, Stella & Dedoussis, Vassilis, 2023. "Integrated LCA and DEA approach for circular economy-driven performance evaluation of wind turbine end-of-life treatment options," Applied Energy, Elsevier, vol. 339(C).
    4. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    5. Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
    6. Plaga, Leonie Sara & Lynch, Muireann & Curtis, John & Bertsch, Valentin, 2024. "How public acceptance affects power system development—A cross-country analysis for wind power," Applied Energy, Elsevier, vol. 359(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    3. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    4. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    5. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    6. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    7. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    8. Danovaro, Roberto & Bianchelli, Silvia & Brambilla, Paola & Brussa, Gaia & Corinaldesi, Cinzia & Del Borghi, Adriana & Dell’Anno, Antonio & Fraschetti, Simonetta & Greco, Silvestro & Grosso, Mario & N, 2024. "Making eco-sustainable floating offshore wind farms: Siting, mitigations, and compensations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    10. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    11. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    12. Sun, Zhen & You, Xianhui, 2024. "Life cycle carbon footprint accounting of an offshore wind farm in Southeast China—Simplified models and carbon benchmarks for typhoons," Applied Energy, Elsevier, vol. 355(C).
    13. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    14. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    15. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    16. Katerina Troullaki & Stelios Rozakis & Kostas Latoufis & Chris Giotitsas & Christina Priavolou & Fausto Freire, 2022. "Sustainable Rural Electrification: Harnessing a Cosmolocal Wind," Energies, MDPI, vol. 15(13), pages 1-16, June.
    17. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    18. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    19. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    20. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5365-:d:1421065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.