IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922018347.html
   My bibliography  Save this article

Distributionally robust energy-transportation coordination in coal mine integrated energy systems

Author

Listed:
  • Huang, Hongxu
  • Li, Zhengmao
  • Beng Gooi, Hoay
  • Qiu, Haifeng
  • Zhang, Xiaotong
  • Lv, Chaoxian
  • Liang, Rui
  • Gong, Dunwei

Abstract

In this paper, a coordinated operation approach is proposed for scheduling the energy-transportation coupled coal mine integrated energy system (CMIES) under diverse uncertainties. As the coupling equipment in the coal transportation network (CTN) and the CMIES, the belt conveyors are able to coordinate the coal delivery scheduling and energy management. However, lacking the CTN modelling remains an unsolved challenge. Firstly, this paper proposed a novel energy-transportation coordinated model, consisting of the radial CTN and second-order cone programming (SOCP) relaxed CMIES. To address uncertainties from renewable energy generation output and raw coal production, the distributionally robust optimization (DRO) method is applied under the two-time scale operation framework to overcome the drawbacks of robust optimization and stochastic programming. The first timescale, i.e., the day-ahead scheduling, is focused on energy dispatching at long time intervals while the second scale i.e., the intra-day.

Suggested Citation

  • Huang, Hongxu & Li, Zhengmao & Beng Gooi, Hoay & Qiu, Haifeng & Zhang, Xiaotong & Lv, Chaoxian & Liang, Rui & Gong, Dunwei, 2023. "Distributionally robust energy-transportation coordination in coal mine integrated energy systems," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018347
    DOI: 10.1016/j.apenergy.2022.120577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    2. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    3. Wu, Chuantao & Lin, Xiangning & Sui, Quan & Wang, Zhixun & Feng, Zhongnan & Li, Zhengtian, 2021. "Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets," Applied Energy, Elsevier, vol. 283(C).
    4. Zhang, Shirong & Xia, Xiaohua, 2010. "Optimal control of operation efficiency of belt conveyor systems," Applied Energy, Elsevier, vol. 87(6), pages 1929-1937, June.
    5. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
    6. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    7. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    8. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    9. Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
    10. Lv, Chaoxian & Liang, Rui & Jin, Wei & Chai, Yuanyuan & Yang, Tiankai, 2022. "Multi-stage resilience scheduling of electricity-gas integrated energy system with multi-level decentralized reserve," Applied Energy, Elsevier, vol. 317(C).
    11. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    12. Zhang, Shirong & Xia, Xiaohua, 2011. "Modeling and energy efficiency optimization of belt conveyors," Applied Energy, Elsevier, vol. 88(9), pages 3061-3071.
    13. Hu, Hejuan & Sun, Xiaoyan & Zeng, Bo & Gong, Dunwei & Zhang, Yong, 2022. "Enhanced evolutionary multi-objective optimization-based dispatch of coal mine integrated energy system with flexible load," Applied Energy, Elsevier, vol. 307(C).
    14. Qiu, Haifeng & Gu, Wei & Pan, Jing & Xu, Bin & Xu, Yinliang & Fan, Miao & Wu, Zhi, 2018. "Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation," Applied Energy, Elsevier, vol. 228(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    2. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    3. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    4. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.
    5. Muller, C.J. & Craig, I.K., 2016. "Energy reduction for a dual circuit cooling water system using advanced regulatory control," Applied Energy, Elsevier, vol. 171(C), pages 287-295.
    6. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    7. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
    8. Numbi, B.P. & Xia, X., 2016. "Optimal energy control of a crushing process based on vertical shaft impactor," Applied Energy, Elsevier, vol. 162(C), pages 1653-1661.
    9. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    10. Witold Kawalec & Natalia Suchorab & Martyna Konieczna-Fuławka & Robert Król, 2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine," Energies, MDPI, vol. 13(19), pages 1-10, October.
    11. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    13. Numbi, B.P. & Xia, X., 2015. "Systems optimization model for energy management of a parallel HPGR crushing process," Applied Energy, Elsevier, vol. 149(C), pages 133-147.
    14. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    15. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    16. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    17. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    18. Stantcheva, Stefanie & Dechezleprêtre, Antoine & Fabre, Adrien & Kruse, Tobias & Planterose, Bluebery & Sanchez Chico, Ana, 2022. "Fighting Climate Change: International Attitudes Toward Climate Policies," CEPR Discussion Papers 17602, C.E.P.R. Discussion Papers.
    19. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    20. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.