IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics0306261922011126.html
   My bibliography  Save this article

New approach for bio-jet fuels production by hydrodeoxygenation of higher alcohols derived from C-C coupling of bio-ethanol

Author

Listed:
  • Liao, Junwei
  • Zhong, Quanwang
  • Gu, Juwen
  • Qiu, Songbai
  • Meng, Qingwei
  • Zhang, Qian
  • Wang, Tiejun

Abstract

A new approach for the synthesis of jet fuel hydrocarbon from bio-ethanol was developed, the integrated catalytic process of ethanol C-C coupling and heavy alcohols hydrodeoxygenation (HDO) was reported. The initial bio-ethanol C-C coupling process was fulfilled directly in aqueous environment over Na/Ni@C catalyst. The obtained high-carbon alcohols can be separated into C4-C7 and C8-C16 alcohols respectively through convenient fractional distillation. The obtained C8-C16 alcohols mainly consist of β-branched primary alcohol, which are desired precursors for jet fuel hydrocarbons. To maintain the branched carbon skeleton in the subsequent alcohol HDO process, the Co-Mo2C catalyst with excellent C-O bonds cleavage and carbon skeleton retention ability were developed. Jet fuel hydrocarbons of 56.7% yield obtained from this approach is mainly C8-C16 branched alkanes, which is beneficial for the cold flow properties. This strategy creates new opportunities for producing alternative jet fuel from the mature bio-ethanol industry.

Suggested Citation

  • Liao, Junwei & Zhong, Quanwang & Gu, Juwen & Qiu, Songbai & Meng, Qingwei & Zhang, Qian & Wang, Tiejun, 2022. "New approach for bio-jet fuels production by hydrodeoxygenation of higher alcohols derived from C-C coupling of bio-ethanol," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922011126
    DOI: 10.1016/j.apenergy.2022.119843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    2. Richard H. Moore & Kenneth L. Thornhill & Bernadett Weinzierl & Daniel Sauer & Eugenio D’Ascoli & Jin Kim & Michael Lichtenstern & Monika Scheibe & Brian Beaton & Andreas J. Beyersdorf & John Barrick , 2017. "Biofuel blending reduces particle emissions from aircraft engines at cruise conditions," Nature, Nature, vol. 543(7645), pages 411-415, March.
    3. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    5. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    6. Mishra, Archana & Ghosh, Sanjoy, 2020. "Saccharification of kans grass biomass by a novel fractional hydrolysis method followed by co-culture fermentation for bioethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 750-759.
    7. Riittonen, Toni & Eränen, Kari & Mäki-Arvela, Päivi & Shchukarev, Andrey & Rautio, Anne-Riikka & Kordas, Krisztian & Kumar, Narendra & Salmi, Tapio & Mikkola, Jyri-Pekka, 2015. "Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina," Renewable Energy, Elsevier, vol. 74(C), pages 369-378.
    8. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," Energy Economics, Elsevier, vol. 70(C), pages 45-60.
    9. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    10. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    11. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," LSE Research Online Documents on Economics 86481, London School of Economics and Political Science, LSE Library.
    12. Weiming Wan & Salai C. Ammal & Zhexi Lin & Kyung-Eun You & Andreas Heyden & Jingguang G. Chen, 2018. "Controlling reaction pathways of selective C–O bond cleavage of glycerol," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    13. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    14. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    5. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    6. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    7. Qiong Chen & Hongyu Zhang & Yui-Yip Lau & Tianni Wang & Wen Wang & Guangsheng Zhang, 2023. "Climate Change, Carbon Peaks, and Carbon Neutralization: A Bibliometric Study from 2006 to 2023," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    8. Guo, Dongmei & Li, Qin & Liu, Peng & Shi, Xunpeng & Yu, Jian, 2023. "Power shortage and firm performance: Evidence from a Chinese city power shortage index," Energy Economics, Elsevier, vol. 119(C).
    9. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    10. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    11. Bin Xiong & Qi Sui, 2023. "Does Carbon Emissions Trading Policy Improve Inclusive Green Resilience in Cities? Evidence from China," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    12. Ge, Yongbo & Zhu, Yuexiao, 2022. "Boosting green recovery: Green credit policy in heavily polluted industries and stock price crash risk," Resources Policy, Elsevier, vol. 79(C).
    13. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    14. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.
    15. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    16. Wu, Tian & Wang, Shouyang & Wang, Lining & Tang, Xiao, 2022. "Contribution of China's online car-hailing services to its 2050 carbon target: Energy consumption assessment based on the GCAM-SE model," Energy Policy, Elsevier, vol. 160(C).
    17. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    18. Liu, Jiatong & Mao, Weifang & Qiao, Xingzhi, 2023. "Dynamic and asymmetric effects between carbon emission trading, financial uncertainties, and Chinese industry stocks: Evidence from quantile-on-quantile and causality-in-quantiles analysis," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    19. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    20. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922011126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.