IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921014057.html
   My bibliography  Save this article

General equilibrium impact evaluation of food top-up induced by households’ renewable power self-supply in 141 regions

Author

Listed:
  • Binh Nguyen, Duong
  • Nong, Duy
  • Simshauser, Paul
  • Nguyen-Huy, Thong

Abstract

This article employs a global computable general equilibrium economic model (GTAP-E-PowerS) to examine the impact on the world economy if households in every country self-supply power to meet 30–100% of residential demand, with subsequent monetary savings diverted to consuming more food. Results show the power generation sector reduces output levels by 14%–42% across various countries if households 100% self-supply. Coal mining sectors are adversely affected in numerous countries with contractions of 9%–28% ($6,086-$18,935 million) in the United States and 4%–13% ($2,505–$8,143 million) in Australia. Improved outcomes for the world environment are found with reductions of CO2e emission levels of 2.24%–7.38% (or 924–3,042 MtCO2 equivalent). The agriculture and food-processing sectors expand significantly in many countries but also cause major increases in land prices, particularly in land-scarce countries in Middle East, Europe, Japan, and Taiwan. Results also show the security of food and energy supply are improved along with environmental gains from lower emission levels. However, the energy sector is adversely affected and those countries with a heavy reliance on fossil fuel extraction and mining activities experience significant reductions in real GDP.

Suggested Citation

  • Binh Nguyen, Duong & Nong, Duy & Simshauser, Paul & Nguyen-Huy, Thong, 2022. "General equilibrium impact evaluation of food top-up induced by households’ renewable power self-supply in 141 regions," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014057
    DOI: 10.1016/j.apenergy.2021.118126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 80(C), pages 133-144.
    2. Rebane, Kaja L. & Barham, Bradford L., 2011. "Knowledge and adoption of solar home systems in rural Nicaragua," Energy Policy, Elsevier, vol. 39(6), pages 3064-3075, June.
    3. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    4. Schleicher-Tappeser, Ruggero, 2012. "How renewables will change electricity markets in the next five years," Energy Policy, Elsevier, vol. 48(C), pages 64-75.
    5. Baulch, Bob & Duong Do, Thuy & Le, Thai-Ha, 2018. "Constraints to the uptake of solar home systems in Ho Chi Minh City and some proposals for improvement," Renewable Energy, Elsevier, vol. 118(C), pages 245-256.
    6. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    7. Simshauser, Paul, 2021. "Vulnerable households and fuel poverty: Measuring the efficiency of policy targeting in Queensland," Energy Economics, Elsevier, vol. 101(C).
    8. Wee, Sherilyn, 2016. "The effect of residential solar photovoltaic systems on home value: A case study of Hawai‘i," Renewable Energy, Elsevier, vol. 91(C), pages 282-292.
    9. Qurat-ul-Ann, Abre-Rehmat & Mirza, Faisal Mehmood, 2020. "Meta-analysis of empirical evidence on energy poverty: The case of developing economies," Energy Policy, Elsevier, vol. 141(C).
    10. Paul Simshauser & Leonard Smith & Patrick Whish-Wilson & Tim Nelson, 2016. "Foreign aid via 3-Party Covenant Financings of capital-intensive infrastructure," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(2), pages 183-211, May.
    11. Nong, Duy, 2020. "Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa," Energy Policy, Elsevier, vol. 140(C).
    12. Nong, Duy & Wang, Can & Al-Amin, Abul Quasem, 2020. "A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    14. Hossain Mondal, Md. Alam, 2010. "Economic viability of solar home systems: Case study of Bangladesh," Renewable Energy, Elsevier, vol. 35(6), pages 1125-1129.
    15. Huiming Zhang & Kai Wu & Yueming Qiu & Gabriel Chan & Shouyang Wang & Dequn Zhou & Xianqiang Ren, 2020. "Solar photovoltaic interventions have reduced rural poverty in China," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    16. Gustavsson, Mathias & Ellegård, Anders, 2004. "The impact of solar home systems on rural livelihoods. Experiences from the Nyimba Energy Service Company in Zambia," Renewable Energy, Elsevier, vol. 29(7), pages 1059-1072.
    17. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castaneda, Monica & Franco, Carlos J. & Dyner, Isaac, 2017. "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 341-351.
    2. Liu, Yuan & Chen, Jiahui & Zhao, Lutao & Liao, Hua, 2023. "Rural photovoltaic projects substantially prompt household energy transition: Evidence from China," Energy, Elsevier, vol. 275(C).
    3. Kubli, Merla, 2018. "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, Elsevier, vol. 114(C), pages 173-188.
    4. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    5. Nikolaidis, Alexandros I. & Charalambous, Charalambos A., 2017. "Hidden financial implications of the net energy metering practice in an isolated power system: Critical review and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 706-717.
    6. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    7. Georgios C. Christoforidis & Ioannis P. Panapakidis & Theofilos A. Papadopoulos & Grigoris K. Papagiannis & Ioannis Koumparou & Maria Hadjipanayi & George E. Georghiou, 2016. "A Model for the Assessment of Different Net-Metering Policies," Energies, MDPI, vol. 9(4), pages 1-24, April.
    8. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    9. Xavier Lemaire, 2018. "Solar home systems and solar lanterns in rural areas of the Global South: What impact?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    10. Li, Xuesong & Li, Hao & Wang, Xingwu, 2013. "Farmers' willingness to convert traditional houses to solar houses in rural areas: A survey of 465 households in Chongqing, China," Energy Policy, Elsevier, vol. 63(C), pages 882-886.
    11. Lan, Jing & Khan, Sufyan Ullah & Sadiq, Muhammad & Chien, Fengsheng & Baloch, Zulfiqar Ali, 2022. "Evaluating energy poverty and its effects using multi-dimensional based DEA-like mathematical composite indicator approach: Findings from Asia," Energy Policy, Elsevier, vol. 165(C).
    12. Rutovitz, Jay & Oliva H., Sebastian & McIntosh, Lawrence & Langham, Ed & Teske, Sven & Atherton, Alison & Kelly, Scott, 2018. "Local network credits and local electricity trading: Results of virtual trials and the policy implications," Energy Policy, Elsevier, vol. 120(C), pages 324-334.
    13. Miguel H. Fernandez-Fuentes & Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera, 2021. "Characterization of Technological Innovations in Photovoltaic Rural Electrification, Based on the Experiences of Bolivia, Peru, and Argentina: Third Generation Solar Home Systems," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    14. Friebe, Christian A. & Flotow, Paschen von & Täube, Florian A., 2013. "Exploring the link between products and services in low-income markets—Evidence from solar home systems," Energy Policy, Elsevier, vol. 52(C), pages 760-769.
    15. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    16. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    17. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    18. Peter Cappers & Andrew Satchwell & Will Gorman & Javier Reneses, 2019. "Financial Impacts of Net-Metered Distributed PV on a Prototypical Western Utility’s Shareholders and Ratepayers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    19. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim, 2011. "Are micro-benefits negligible? The implications of the rapid expansion of Solar Home Systems (SHS) in rural Bangladesh for sustainable development," Energy Policy, Elsevier, vol. 39(7), pages 4022-4031, July.
    20. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.