IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008606.html
   My bibliography  Save this article

A global integral terminal sliding mode control based on a novel reaching law for a proton exchange membrane fuel cell system

Author

Listed:
  • Napole, Cristian
  • Derbeli, Mohamed
  • Barambones, Oscar

Abstract

Proton exchange membrane fuel cells are devices with huge potential for renewable and clean industries due to their high efficiency and low emissions. Since the proton exchange membrane fuel cell employed in this research supplied a low output voltage, it was encouraged to use a boost converter with a designed non-linear controller to provide a suitable end-user voltage. In this paper, we proposed a novel control framework based on sliding mode control, which is a global integral sliding mode control linked with a quick reaching law that has been implemented in a commercial fuel cell system Heliocentris FC50 through a dSpace 1102 control board. We compared the strategy with a conventional sliding mode controller and an integral terminal sliding mode controller where we addressed a Lyapunov stability proof has for each structure. We contrasted the experimental outcomes where we proved the superiority of the proposed novel design in terms of robustness, convergence speed. Additionally, as the sliding mode controllers are well known by the energy consumption caused by the chattering effect, we analysed every framework in these terms. Finally, it was found that the proposed structure offered an enhancement in the energy consumption issues. Moreover, the applicability of the proposed control scheme has been demonstrated through the real time implementation over a commercial fuel cell.

Suggested Citation

  • Napole, Cristian & Derbeli, Mohamed & Barambones, Oscar, 2021. "A global integral terminal sliding mode control based on a novel reaching law for a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008606
    DOI: 10.1016/j.apenergy.2021.117473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Wei, Le, 2011. "Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units," Applied Energy, Elsevier, vol. 88(3), pages 814-824, March.
    2. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    3. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    4. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    5. Li, Qi & Wang, Tianhong & Li, Shihan & Chen, Weirong & Liu, Hong & Breaz, Elena & Gao, Fei, 2021. "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," Applied Energy, Elsevier, vol. 285(C).
    6. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    7. Yu-Xin Zhao & Tian Wu & Yan Ma, 2013. "A Double Power Reaching Law of Sliding Mode Control Based on Neural Network," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, September.
    8. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Cristian Napole & Ali Cheknane & José María Gonzalez De Durana, 2021. "An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    9. Ho, Jonathan C. & Saw, Ewe-Chai & Lu, Louis Y.Y. & Liu, John S., 2014. "Technological barriers and research trends in fuel cell technologies: A citation network analysis," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 66-79.
    10. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    11. Zakaria, Z. & Kamarudin, S.K. & Timmiati, S.N., 2016. "Membranes for direct ethanol fuel cells: An overview," Applied Energy, Elsevier, vol. 163(C), pages 334-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    2. Armghan, Hammad & Yang, Ming & Ali, Naghmash & Armghan, Ammar & Alanazi, Abdulaziz, 2022. "Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid," Applied Energy, Elsevier, vol. 316(C).
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    4. Segura, F. & Vivas, F.J. & Andújar, J.M. & Martínez, M., 2023. "Hydrogen-powered refrigeration system for environmentally friendly transport and delivery in the food supply chain," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    2. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    3. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    4. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    5. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    6. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    7. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    8. Patrick S. W. Fong & Xuhua Chang & Qiang Chen, 2018. "Faculty patent assignment in the Chinese mainland: evidence from the top 35 patent application universities," The Journal of Technology Transfer, Springer, vol. 43(1), pages 69-95, February.
    9. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    10. Ogawa, Takaya & Kajikawa, Yuya, 2015. "Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 469-475.
    11. Zakaria, Z. & Kamarudin, S.K., 2016. "Direct conversion technologies of methane to methanol: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 250-261.
    12. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    14. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load," Energies, MDPI, vol. 15(14), pages 1-20, July.
    15. Kosztyán, Zsolt T. & Csizmadia, Tibor & Katona, Attila I., 2021. "SIMILAR – Systematic iterative multilayer literature review method," Journal of Informetrics, Elsevier, vol. 15(1).
    16. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).
    17. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    18. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    19. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    20. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.