IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921006383.html
   My bibliography  Save this article

A new mining framework with piecewise symbolic spatial clustering

Author

Listed:
  • Fang, Hongliang
  • Wang, Yan-Wu
  • Xiao, Jiang-Wen
  • Cui, Shichang
  • Qin, Zhaoyu

Abstract

Shaping residential electricity consumption behaviors can achieve the effect of load shifting to emit less carbon. Electricity consumption pattern is a good way to describe electricity consumption behavior, and is basically determined by household characteristics (HCs). Effective mining of important factors in HCs can help to shape residential electricity consumption behaviors. This paper proposes a new mining framework for discovering the association between HCs and residential electricity consumption patterns. At first, HCs are classified into six categories by the theory of planned behavior based factor classification. Then, typical electricity consumption patterns (TECPs) of each individual resident in different periods divided by seasons and weekday are extracted by a proposed piecewise symbolic spatial clustering with noise algorithm which combines symbolic aggregate approximation and density-based spatial clustering of applications with noise algorithm. Afterward, TECPs are clustered by hierarchical clustering method. To determine the clustering number, six clustering validity indexes are applied to evaluate the clustering results. Finally, a feature-selection-based multifactor analysis method is designed to evaluate 95 factors in HCs impacts on TECPs. Results of the case study using 3117 records including smart meter data and survey data show that most factors of attitudes toward energy category and socio-demographic category are effective factors for predicting TECPs, while the factors in appliance and heating category are non-significant. The proposed mining framework and the findings can provide guidance of shaping grid-friendly electricity consumption behavior.

Suggested Citation

  • Fang, Hongliang & Wang, Yan-Wu & Xiao, Jiang-Wen & Cui, Shichang & Qin, Zhaoyu, 2021. "A new mining framework with piecewise symbolic spatial clustering," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006383
    DOI: 10.1016/j.apenergy.2021.117226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921006383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    2. Robert Gifford & Christine Kormos & Amanda McIntyre, 2011. "Behavioral dimensions of climate change: drivers, responses, barriers, and interventions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 801-827, November.
    3. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    4. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    5. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    6. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    8. Deborah Roy, 2017. "Energy use behaviour: A window of opportunity," Nature Energy, Nature, vol. 2(6), pages 1-2, June.
    9. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
    10. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    11. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    12. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    13. Wang, Shanyong & Lin, Shoufu & Li, Jun, 2018. "Exploring the effects of non-cognitive and emotional factors on household electricity saving behavior," Energy Policy, Elsevier, vol. 115(C), pages 171-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    2. Wang, Shanyong & Lin, Shoufu & Li, Jun, 2018. "Exploring the effects of non-cognitive and emotional factors on household electricity saving behavior," Energy Policy, Elsevier, vol. 115(C), pages 171-180.
    3. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    4. Peter Ansu‐Mensah & Murad A. Bein, 2019. "Towards sustainable consumption: Predicting the impact of social‐psychological factors on energy conservation intentions in Northern Cyprus," Natural Resources Forum, Blackwell Publishing, vol. 43(3), pages 181-193, August.
    5. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    6. Salah Bouktif & Ali Ouni & Sanja Lazarova-Molnar, 2022. "Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective Electrical Energy Savings: An Overview," Energies, MDPI, vol. 15(5), pages 1-30, February.
    7. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    9. Wei Zheng & Hongliang Qiu & Alastair M. Morrison, 2023. "Applying a Combination of SEM and fsQCA to Predict Tourist Resource-Saving Behavioral Intentions in Rural Tourism: An Extension of the Theory of Planned Behavior," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    10. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    11. Saqib Ali & Habib Ullah & Minhas Akbar & Waheed Akhtar & Hasan Zahid, 2019. "Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    12. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    13. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Salem, Mohammed Z. & Ertz, Myriam & Sarigӧllü, Emine, 2021. "Demarketing strategies to rationalize electricity consumption in the Gaza Strip-Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Godfred Matthew Yaw Owusu & Gabriel Korankye & Octavia Ama Serwaa Otchere & Maryam Kriese, 2022. "Money on the mind: emotional and non-cognitive predictors and outcomes of financial behaviour of young adults," SN Business & Economics, Springer, vol. 2(11), pages 1-22, November.
    16. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    17. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    18. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    19. Cem Keskin & M. Pınar Mengüç, 2018. "On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    20. Wang, Yao & Lin, Boqiang & Li, Minyang, 2021. "Is household electricity saving a virtuous circle? A case study of the first-tier cities in China," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.