A method for analyzing the irrepazrability of diverse electricity consumption data based on improved data generation technology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123994
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
- Fang, Hongliang & Wang, Yan-Wu & Xiao, Jiang-Wen & Cui, Shichang & Qin, Zhaoyu, 2021. "A new mining framework with piecewise symbolic spatial clustering," Applied Energy, Elsevier, vol. 298(C).
- Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
- Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
- Liu, Xingtao & Tang, Qinbin & Feng, Yitian & Lin, Mingqiang & Meng, Jinhao & Wu, Ji, 2023. "Fast sorting method of retired batteries based on multi-feature extraction from partial charging segment," Applied Energy, Elsevier, vol. 351(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Linfei & Xiong, Yi, 2024. "Incremental learning user profile and deep reinforcement learning for managing building energy in heating water," Energy, Elsevier, vol. 313(C).
- Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
- Yu, Sheng & He, Bin & Fang, Lei, 2025. "Multi-step short-term forecasting of photovoltaic power utilizing TimesNet with enhanced feature extraction and a novel loss function," Applied Energy, Elsevier, vol. 388(C).
- Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
- Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
- Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
- Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
- Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
- Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
- Wenjie Guo & Jie Liu & Jun Ma & Zheng Lan, 2025. "Short-Term Power Load Forecasting Using Adaptive Mode Decomposition and Improved Least Squares Support Vector Machine," Energies, MDPI, vol. 18(10), pages 1-17, May.
- Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
- Xun Dou & Yu He, 2025. "A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis," Mathematics, MDPI, vol. 13(7), pages 1-22, March.
- Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
- José Antonio Moreira de Rezende & Reginaldo Gonçalves Leão Junior & Otávio de Souza Martins Gomes, 2024. "Scientometric Analysis of Publications on Household Electricity Theft and Energy Consumption Load Profiling in a Smart Grid Context," Sustainability, MDPI, vol. 16(22), pages 1-19, November.
- Li, Feng & Liu, Shiheng & Wang, Tianhu & Liu, Ranran, 2024. "Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-Attention network forecasts," Energy, Elsevier, vol. 309(C).
- Gao, Ding & Zhi, Yuan & Rong, Xing & Yang, Xudong, 2025. "Mismatch analysis of rooftop photovoltaics supply and farmhouse load: Data dimensionality reduction and explicable load pattern mining via hybrid deep learning," Applied Energy, Elsevier, vol. 377(PB).
- Chen, Wenhao & Rong, Fei & Lin, Chuan, 2025. "A multi-energy loads forecasting model based on dual attention mechanism and multi-scale hierarchical residual network with gated recurrent unit," Energy, Elsevier, vol. 320(C).
- Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
- Deng, Liting & Xu, Yanyan & Xue, Feng & Pei, Zheng, 2024. "Mining interpretable fuzzy If-Then linguistic rules from energy and economic data to forecast CO2 emissions of regions in China," Energy, Elsevier, vol. 313(C).
- Wu, Bizhi & Xiao, Jiangwen & Wang, Shanlin & Zhang, Ziyuan & Wen, Renqiang, 2025. "Enhancing short-term net load forecasting with additive neural decomposition and Weibull Attention," Energy, Elsevier, vol. 322(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013771. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.