IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v265y2020ics030626192030283x.html
   My bibliography  Save this article

Retail electricity pricing via online-learning of data-driven demand response of HVAC systems

Author

Listed:
  • Yoon, Ah-Yun
  • Kim, Young-Jin
  • Zakula, Tea
  • Moon, Seung-Ill

Abstract

This paper proposes an online-learning-based strategy for a distribution system operator (DSO) to determine optimal retail prices, considering the optimal operations of heating, ventilation, and air-conditioning (HVAC) systems in commercial buildings. An artificial neural network (ANN) is trained online with building energy data and represented using an explicit set of linear and nonlinear equations. An optimization problem for price-based demand response (DR) is then formulated using the explicit ANN model and repeatedly solved, producing data on optimal HVAC load schedules for various profiles of electricity prices and building environments. Another ANN is then trained online to predict directly the optimal load schedules, which is referred to as meta-prediction (MP). By replacing the DR optimization problem with the MP-enabled ANN, optimal retail electricity pricing can be achieved using a single-level decision-making structure. Consequently, the pricing optimization problem becomes simplified, enabling easier implementation and increased scalability for HVAC systems in a large distribution grid. In case studies, the proposed single-level pricing strategy is verified to successfully reflect the game-theoretic relations between the DSO and building operators, such that they effectively achieve their own objectives via the operational flexibility of the HVAC systems, while ensuring grid voltage stability and occupants’ thermal comfort.

Suggested Citation

  • Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:appene:v:265:y:2020:i:c:s030626192030283x
    DOI: 10.1016/j.apenergy.2020.114771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030283X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    2. Patteeuw, Dieter & Henze, Gregor P. & Helsen, Lieve, 2016. "Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits," Applied Energy, Elsevier, vol. 167(C), pages 80-92.
    3. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    4. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    5. Kusiak, Andrew & Xu, Guanglin, 2012. "Modeling and optimization of HVAC systems using a dynamic neural network," Energy, Elsevier, vol. 42(1), pages 241-250.
    6. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    7. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    8. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.
    9. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    10. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    11. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
    12. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    13. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    14. Zhang, Chunyu & Wang, Qi & Wang, Jianhui & Korpås, Magnus & Khodayar, Mohammad E., 2016. "Strategy-making for a proactive distribution company in the real-time market with demand response," Applied Energy, Elsevier, vol. 181(C), pages 540-548.
    15. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    2. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Ju, Liwei & Wu, Jing & Lin, Hongyu & Tan, Qinliang & Li, Gen & Tan, Zhongfu & Li, Jiayu, 2020. "Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response," Applied Energy, Elsevier, vol. 271(C).
    4. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Morteza Neishaboori & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh & Mostafa Esmaeeli & Hamed Davari Ardakani, 2024. "Stochastic optimal pricing for retail electricity considering demand response, renewable energy sources and environmental effects," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 435-451, October.
    6. Mishra, Mrityunjay Kumar & Al-Sumaiti, Ameena Saad & Murari, Krishna & Parida, S.K. & Jaafari, Khaled Al, 2024. "Strategic interaction among distribution network operator and residential end-users via distribution use of system charges in demand-side management environment," Applied Energy, Elsevier, vol. 364(C).
    7. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    9. Han, Rushuai & Hu, Qinran & Cui, Hantao & Chen, Tao & Quan, Xiangjun & Wu, Zaijun, 2022. "An optimal bidding and scheduling method for load service entities considering demand response uncertainty," Applied Energy, Elsevier, vol. 328(C).
    10. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reynolds, Jonathan & Ahmad, Muhammad Waseem & Rezgui, Yacine & Hippolyte, Jean-Laurent, 2019. "Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 699-713.
    2. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    3. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    4. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    5. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    6. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    7. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    8. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    9. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    10. Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
    11. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    13. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    14. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    15. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    16. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Hu, Maomao & Xiao, Fu & Jørgensen, John Bagterp & Wang, Shengwei, 2019. "Frequency control of air conditioners in response to real-time dynamic electricity prices in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 92-106.
    18. Samy Faddel & Guanyu Tian & Qun Zhou, 2021. "Decentralized Management of Commercial HVAC Systems," Energies, MDPI, vol. 14(11), pages 1-18, May.
    19. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    20. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:265:y:2020:i:c:s030626192030283x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.