IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925009833.html

Data-driven control, optimization, and decision-making in active power distribution networks

Author

Listed:
  • Yu, Nanpeng
  • Zhang, Shaorong
  • Qin, Jingtao
  • Hidalgo-Gonzalez, Patricia
  • Dobbe, Roel
  • Liu, Yang
  • Dubey, Anamika
  • Wang, Yubo
  • Dirkman, John
  • Zhong, Haiwang
  • Lu, Ning
  • Ma, Emily
  • Ding, Zhaohao
  • Cao, Di
  • Zhao, Junbo
  • Gao, Yuanqi

Abstract

This paper reviews the burgeoning field of data-driven algorithms and their application in solving increasingly complex decision-making, optimization, and control problems within active distribution networks. By summarizing a wide array of use cases, including network reconfiguration and restoration, crew dispatch, Volt-Var control, dispatch of distributed energy resources, and optimal power flow, we underscore the versatility and potential of data-driven approaches to improve active distribution system operations. The categorization of these algorithms into four main groups-mathematical optimization, end-to-end learning, learning-assisted optimization, and physics-informed learning-provides a structured overview of the current state of research in this domain. Additionally, we delve into enhanced algorithmic strategies such as non-centralized methods, robust and stochastic methods, and online learning, which represent significant advancements in addressing the unique challenges of active distribution systems. The discussion extends to the critical role of datasets and test systems in fostering an open and collaborative research environment, essential for the validation and benchmarking of novel data-driven solutions. In conclusion, we outline the primary challenges that must be navigated to bridge the gap between theoretical research and practical implementation, alongside the opportunities that lie ahead. These insights aim to pave the way for the development of more resilient, efficient, and adaptive active distribution networks, leveraging the full spectrum of data-driven algorithmic innovations.

Suggested Citation

  • Yu, Nanpeng & Zhang, Shaorong & Qin, Jingtao & Hidalgo-Gonzalez, Patricia & Dobbe, Roel & Liu, Yang & Dubey, Anamika & Wang, Yubo & Dirkman, John & Zhong, Haiwang & Lu, Ning & Ma, Emily & Ding, Zhaoha, 2025. "Data-driven control, optimization, and decision-making in active power distribution networks," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009833
    DOI: 10.1016/j.apenergy.2025.126253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    3. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    4. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    5. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    6. repec:aer:wpaper:373 is not listed on IDEAS
    7. Li, Yanshu & Mei, Bin & Linhares-Juvenal, Thaís, 2019. "The economic contribution of the world's forest sector," Forest Policy and Economics, Elsevier, vol. 100(C), pages 236-253.
    8. Pavani Ponnaganti & Jayakrishnan R Pillai & Birgitte Bak‐Jensen, 2018. "Opportunities and challenges of demand response in active distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    9. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    10. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    11. Rui Li & Wei Wang & Zhe Chen & Jiuchun Jiang & Weige Zhang, 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches," Energies, MDPI, vol. 10(11), pages 1-27, October.
    12. Lee, Xian Yeow & Sarkar, Soumik & Wang, Yubo, 2022. "A graph policy network approach for Volt-Var Control in power distribution systems," Applied Energy, Elsevier, vol. 323(C).
    13. Sidhant Misra & Line Roald & Yeesian Ng, 2022. "Learning for Constrained Optimization: Identifying Optimal Active Constraint Sets," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 463-480, January.
    14. Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
    15. Zhang, S. & Mishra, Y. & Shahidehpour, M., 2017. "Utilizing distributed energy resources to support frequency regulation services," Applied Energy, Elsevier, vol. 206(C), pages 1484-1494.
    16. ., 2019. "Special sectors," Chapters, in: Islamic Finance, chapter 6, pages 149-179, Edward Elgar Publishing.
    17. Chen, Yongdong & Liu, Youbo & Zhao, Junbo & Qiu, Gao & Yin, Hang & Li, Zhengbo, 2023. "Physical-assisted multi-agent graph reinforcement learning enabled fast voltage regulation for PV-rich active distribution network," Applied Energy, Elsevier, vol. 351(C).
    18. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
    19. Jie Cai & Nan Li, 2019. "Growth Through Inter-sectoral Knowledge Linkages," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1827-1866.
    20. Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
    21. Shengnan Wang & Chunguang Li, 2018. "Distributed Stochastic Algorithm for Global Optimization in Networked System," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1001-1007, December.
    22. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    23. Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
    24. Wu, Tao & Wang, Jianhui & Lu, Xiaonan & Du, Yuhua, 2022. "AC/DC hybrid distribution network reconfiguration with microgrid formation using multi-agent soft actor-critic," Applied Energy, Elsevier, vol. 307(C).
    25. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    26. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Fasogbon, Samson Kolawole & Fetuga, Ibrahim Ademola & Oyeniran, Ayodele Temitope & Shaibu, Samuel Adavize & Afolabi, Samuel & Ndokwu, Tochukwu Anthony & Oluwadare, Seyi Rufus & Onafowokan, John Temito, 2025. "Optimization of energy grid efficiency with machine learning: A comprehensive review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 223(C).
    3. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    4. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    5. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    7. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    8. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    9. Tan, Yingqi & Xu, Jingyi & Ma, Junyi & Li, Zirui & Chen, Huiyan & Xi, Junqiang & Liu, Haiou, 2024. "A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles," Energy, Elsevier, vol. 306(C).
    10. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    11. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
    13. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
    14. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
    15. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    17. Xiang, Yue & Dai, Jiakun & Xue, Ping & Liu, Junyong, 2023. "Autonomous topology planning for distribution network expansion: A learning-based decoupled optimization method," Applied Energy, Elsevier, vol. 348(C).
    18. Nastaran Gholizadeh & Petr Musilek, 2024. "A Generalized Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Power Flow-Based Action-Space Sampling," Energies, MDPI, vol. 17(20), pages 1-18, October.
    19. Khaloie, Hooman & Dolányi, Mihály & Toubeau, Jean-François & Vallée, François, 2025. "Review of machine learning techniques for optimal power flow," Applied Energy, Elsevier, vol. 388(C).
    20. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.