IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v86y2019i5p1827-1866..html
   My bibliography  Save this article

Growth Through Inter-sectoral Knowledge Linkages

Author

Listed:
  • Jie Cai
  • Nan Li

Abstract

The majority of innovations are developed by multi-sector firms. The knowledge needed to invent new products is more easily adapted from some sectors than from others. We study this network of knowledge linkages between sectors and its impact on firm innovation and aggregate growth. We first document a set of sectoral-level and firm-level observations on knowledge applicability and firms’ multi-sector patenting behaviour. We then develop a general equilibrium model of firm innovation in which inter-sectoral knowledge linkages determine the set of sectors a firm chooses to innovate in and how much R&D to invest in each sector. It captures how firms evolve in the technology space, accounts for cross-sector differences in R&D intensity, and describes an aggregate model of technological change. The model matches new observations as demonstrated by simulation. It also yields new insights regarding the mechanism through which sectoral fixed costs of R&D affect growth.

Suggested Citation

  • Jie Cai & Nan Li, 2019. "Growth Through Inter-sectoral Knowledge Linkages," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1827-1866.
  • Handle: RePEc:oup:restud:v:86:y:2019:i:5:p:1827-1866.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdy062
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    3. Czarnitzki, Dirk & Kraft, Kornelius & Thorwarth, Susanne, 2009. "The knowledge production of 'R' and 'D'," Economics Letters, Elsevier, vol. 105(1), pages 141-143, October.
    4. Ufuk Akcigit & Murat Alp Celik & Jeremy Greenwood, 2016. "Buy, Keep, or Sell: Economic Growth and the Market for Ideas," Econometrica, Econometric Society, vol. 84, pages 943-984, May.
    5. Plosser, Charles I, 1989. "Understanding Real Business Cycles," Journal of Economic Perspectives, American Economic Association, vol. 3(3), pages 51-77, Summer.
    6. Andrew B. Bernard & Stephen J. Redding & Peter K. Schott, 2009. "Products and Productivity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 681-709, December.
    7. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    8. Christian Broda & David E. Weinstein, 2006. "Globalization and the Gains From Variety," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 541-585.
    9. Ufuk Akcigit & Douglas Hanley & Nicolas Serrano-Velarde, 2021. "Back to Basics: Basic Research Spillovers, Innovation Policy, and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 1-43.
    10. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    11. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    12. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    13. Kristian Behrens & Giordano Mion & Yasusada Murata & Jens Südekum, 2014. "Trade, Wages, And Productivity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(4), pages 1305-1348, November.
    14. Andrew Atkeson & Ariel Tomás Burstein, 2010. "Innovation, Firm Dynamics, and International Trade," Journal of Political Economy, University of Chicago Press, vol. 118(3), pages 433-484, June.
    15. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    16. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
    17. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
    18. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    19. Gene M. Grossman & Elhanan Helpman, 1993. "Innovation and Growth in the Global Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262570971, December.
    20. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Establishment Size Dynamics in the Aggregate Economy," American Economic Review, American Economic Association, vol. 97(5), pages 1639-1666, December.
    21. Benhabib, Jess & Bisin, Alberto & Zhu, Shenghao, 2015. "The wealth distribution in Bewley economies with capital income risk," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 489-515.
    22. Ho, Linda Lee & Trindade, Anderson Laécio Galindo, 2009. "Economic design of an X chart for short-run production," International Journal of Production Economics, Elsevier, vol. 120(2), pages 613-624, August.
    23. Natarajan Balasubramanian & Jagadeesh Sivadasan, 2011. "What Happens When Firms Patent? New Evidence from U.S. Economic Census Data," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 126-146, February.
    24. Bernstein, Jeffrey I. & Nadiri, M. Ishaq, 1988. "Interindustry R&D, Rates of Return and Production in High-Tech Industries," Working Papers 88-04, C.V. Starr Center for Applied Economics, New York University.
    25. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    26. Cohen, Wesley M & Levin, Richard C & Mowery, David C, 1987. "Firm Size and R&D Intensity: A Re-examination," Journal of Industrial Economics, Wiley Blackwell, vol. 35(4), pages 543-565, June.
    27. Richard R. Nelson, 1988. "Modelling the Connections in the Cross Section between Technical Progress and R&D Intensity," RAND Journal of Economics, The RAND Corporation, vol. 19(3), pages 478-485, Autumn.
    28. Hay, Diana & Rastegar, Reza & Roitershtein, Alexander, 2011. "Multivariate linear recursions with Markov-dependent coefficients," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 521-527, March.
    29. Erzo G. J. Luttmer, 2007. "Selection, Growth, and the Size Distribution of Firms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1103-1144.
    30. Bernstein, Jeffrey I & Nadiri, M Ishaq, 1988. "Interindustry R&D Spillovers, Rates of Return, and Production in High-Tech Industries," American Economic Review, American Economic Association, vol. 78(2), pages 429-434, May.
    31. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    32. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    33. Stelzer, Robert, 2008. "Multivariate Markov-switching ARMA processes with regularly varying noise," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1177-1190, July.
    34. Klenow, Peter J., 1996. "Industry innovation: where and why," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 44(1), pages 125-150, June.
    35. Hopenhayn, Hugo A, 1992. "Entry, Exit, and Firm Dynamics in Long Run Equilibrium," Econometrica, Econometric Society, vol. 60(5), pages 1127-1150, September.
    36. Charles I. Jones, 2011. "Intermediate Goods and Weak Links in the Theory of Economic Development," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 1-28, April.
    37. Robert Wieser, 2005. "Research And Development Productivity And Spillovers: Empirical Evidence At The Firm Level," Journal of Economic Surveys, Wiley Blackwell, vol. 19(4), pages 587-621, September.
    38. Wesley M. Cohen & Richard C. Levin & David C. Mowery, 1987. "Firm Size and R&D Intensity: A Re-Examination," NBER Working Papers 2205, National Bureau of Economic Research, Inc.
    39. Michael Horvath, 1998. "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(4), pages 781-808, October.
    40. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jingong & Xie, Taojun, 2023. "Technology centrality, bilateral knowledge spillovers and mergers and acquisitions," Journal of Corporate Finance, Elsevier, vol. 79(C).
    2. Salome Baslandze, 2015. "The Role of the IT Revolution in Knowledge Diffusion, Innovation and Reallocation," 2015 Meeting Papers 1488, Society for Economic Dynamics.
    3. Salome Baslandze, 2016. "The Role of the IT Revolution in Knowledge Di ffusion, Innovation and Reallocation," 2016 Meeting Papers 1509, Society for Economic Dynamics.
    4. A. Fronzetti Colladon & B. Guardabascio & F. Venturini, 2023. "A new mapping of technological interdependence," Papers 2308.00014, arXiv.org, revised Mar 2024.
    5. Zenou, Yves & Huang, Jingong, 2020. "Key Sectors in Endogeneous Growth," CEPR Discussion Papers 15281, C.E.P.R. Discussion Papers.
    6. Liu, Zihua & Zhou, Sili, 2022. "Political favoritism towards resource allocation: Evidence of grants by natural science foundation in China," Emerging Markets Review, Elsevier, vol. 51(PA).
    7. Tomoya Mori & Shosei Sakaguchi, 2019. "Creation of knowledge through exchanges of knowledge: Evidence from Japanese patent data," Papers 1908.01256, arXiv.org, revised Aug 2020.
    8. Ayerst, Stephen & Ibrahim, Faisal & MacKenzie, Gaelan & Rachapalli, Swapnika, 2023. "Trade and diffusion of embodied technology: an empirical analysis," Journal of Monetary Economics, Elsevier, vol. 137(C), pages 128-145.
    9. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    2. Ufuk Akcigit & William Kerr, 2015. "Growth through Heterogeneous Innovation, Second Version," PIER Working Paper Archive 15-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    3. Samaniego, Roberto M., 2013. "Knowledge spillovers and intellectual property rights," International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 50-63.
    4. Jingong Huang, 2017. "Technology Network Innovation and Distribution," 2017 Meeting Papers 24, Society for Economic Dynamics.
    5. Jess Benhabib & Jesse Perla & Christopher Tonetti, 2021. "Reconciling Models of Diffusion and Innovation: A Theory of the Productivity Distribution and Technology Frontier," Econometrica, Econometric Society, vol. 89(5), pages 2261-2301, September.
    6. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
    7. repec:zbw:bofrdp:2013_028 is not listed on IDEAS
    8. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    9. Aghion, Philippe & Akcigit, Ufuk & Howitt, Peter, 2014. "What Do We Learn From Schumpeterian Growth Theory?," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 0, pages 515-563, Elsevier.
    10. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    11. Andrew Atkeson & Ariel Burstein, 2019. "Aggregate Implications of Innovation Policy," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2625-2683.
    12. L. Rachel Ngai & Roberto M. Samaniego, 2006. "An R&D-Based Model of Multi-Sector Growth," CEP Discussion Papers dp0762, Centre for Economic Performance, LSE.
    13. Daron Acemoglu & Ufuk Akcigit & Harun Alp & Nicholas Bloom & William Kerr, 2018. "Innovation, Reallocation, and Growth," American Economic Review, American Economic Association, vol. 108(11), pages 3450-3491, November.
    14. Ngai, L. Rachel & Samaniego, Roberto M., 2008. "Research and Productivity Growth Across Industries," LSE Research Online Documents on Economics 4410, London School of Economics and Political Science, LSE Library.
    15. Ngai, Liwa Rachel & Samaniego, Roberto, 2007. "On the Long run Determinants of Industry TFP Growth Rates," CEPR Discussion Papers 6408, C.E.P.R. Discussion Papers.
    16. Nancy L Stokey, 2017. "Technology, Skill and Long Run Growth," 2017 Meeting Papers 199, Society for Economic Dynamics.
    17. Jingong Huang, 2018. "Technology Network, Innovation And Growth," 2018 Meeting Papers 178, Society for Economic Dynamics.
    18. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    19. , & Lorenz, Jan & ,, 2016. "Innovation vs. imitation and the evolution of productivity distributions," Theoretical Economics, Econometric Society, vol. 11(3), September.
    20. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    21. Erzo G.J. Luttmer, 2010. "Models of Growth and Firm Heterogeneity," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 547-576, September.

    More about this item

    Keywords

    Endogenous growth; R&D; Inter-sectoral knowledge spillovers; Firm innovation; Multiple sectors; Resource allocation;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:86:y:2019:i:5:p:1827-1866.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.