IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003678.html
   My bibliography  Save this article

Review of machine learning techniques for optimal power flow

Author

Listed:
  • Khaloie, Hooman
  • Dolányi, Mihály
  • Toubeau, Jean-François
  • Vallée, François

Abstract

The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.

Suggested Citation

  • Khaloie, Hooman & Dolányi, Mihály & Toubeau, Jean-François & Vallée, François, 2025. "Review of machine learning techniques for optimal power flow," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003678
    DOI: 10.1016/j.apenergy.2025.125637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    2. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    3. Wang, Tianjing & Tang, Yong, 2022. "Transfer-Reinforcement-Learning-Based rescheduling of differential power grids considering security constraints," Applied Energy, Elsevier, vol. 306(PB).
    4. Constante-Flores, Gonzalo E. & Conejo, Antonio J. & Qiu, Feng, 2024. "Daily scheduling of generating units with natural-gas market constraints," European Journal of Operational Research, Elsevier, vol. 313(1), pages 387-399.
    5. Sidhant Misra & Line Roald & Yeesian Ng, 2022. "Learning for Constrained Optimization: Identifying Optimal Active Constraint Sets," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 463-480, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    2. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    3. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    4. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    5. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    6. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    7. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    8. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Latify, Mohammad Amin & Mokhtari, Ali & Alavi-Eshkaftaki, Amin & Rajaei Najafabadi, Fatemeh & Hashemian, Seyed Nasrollah & Khaleghizadeh, Ali & Nezamabadi, Hossein & Yousefi Ramandi, Mostafa & Mozdawa, 2025. "Security-constrained unit commitment: Modeling, solutions and evaluations," Applied Energy, Elsevier, vol. 390(C).
    10. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Peng, Pei & Li, Wenqiang & Shi, Xing, 2023. "Cross temporal-spatial transferability investigation of deep reinforcement learning control strategy in the building HVAC system level," Energy, Elsevier, vol. 263(PB).
    12. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    13. Xi He & Heng Dong & Wanli Yang & Wei Li, 2023. "Multi-Source Information Fusion Technology and Its Application in Smart Distribution Power System," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    14. Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.
    15. Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
    16. Valerio Mariani & Giovanna Adinolfi & Amedeo Buonanno & Roberto Ciavarella & Antonio Ricca & Vincenzo Sorrentino & Giorgio Graditi & Maria Valenti, 2024. "A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    17. Putra, Lingga Aksara & Köstler, Marlit & Grundwürmer, Melissa & Li, Liuyi & Huber, Bernhard & Gaderer, Matthias, 2025. "State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms," Applied Energy, Elsevier, vol. 377(PA).
    18. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
    19. Saidatul Habsah Asman & Nur Fadilah Ab Aziz & Ungku Anisa Ungku Amirulddin & Mohd Zainal Abidin Ab Kadir, 2021. "Transient Fault Detection and Location in Power Distribution Network: A Review of Current Practices and Challenges in Malaysia," Energies, MDPI, vol. 14(11), pages 1-37, May.
    20. Bakhshideh Zad, Bashir & Toubeau, Jean-François & Bruninx, Kenneth & Vatandoust, Behzad & De Grève, Zacharie & Vallée, François, 2022. "Supervised learning-assisted modeling of flow-based domains in European resource adequacy assessments," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.