Regionalised heat demand and power-to-heat capacities in Germany – An open dataset for assessing renewable energy integration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114161
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Seyboth, Kristin & Beurskens, Luuk & Langniss, Ole & Sims, Ralph E.H., 2008. "Recognising the potential for renewable energy heating and cooling," Energy Policy, Elsevier, vol. 36(7), pages 2460-2463, July.
- Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
- Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
- Grein, Arne & Pehnt, Martin, 2011. "Load management for refrigeration systems: Potentials and barriers," Energy Policy, Elsevier, vol. 39(9), pages 5598-5608, September.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
- Hake, Jürgen-Friedrich & Fischer, Wolfgang & Venghaus, Sandra & Weckenbrock, Christoph, 2015. "The German Energiewende – History and status quo," Energy, Elsevier, vol. 92(P3), pages 532-546.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2022. "Economic Assessment of Demand Response Using Coupled National and Regional Optimisation Models," Energies, MDPI, vol. 15(22), pages 1-25, November.
- Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
- Millar, Michael-Allan & Yu, Zhibin & Burnside, Neil & Jones, Greg & Elrick, Bruce, 2021. "Identification of key performance indicators and complimentary load profiles for 5th generation district energy networks," Applied Energy, Elsevier, vol. 291(C).
- Abdulraheem Salaymeh & Irene Peters & Stefan Holler, 2024. "Factoring Building Refurbishment and Climatic Effect into Heat Demand Assessments and Forecasts: Case Study and Open Datasets for Germany," Energies, MDPI, vol. 17(3), pages 1-21, January.
- Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
- Seul-Ye Lim & Jeoung-Sik Min & Seung-Hoon Yoo, 2021. "Price and Income Elasticities of Residential Heat Demand from District Heating System: A Price Sensitivity Measurement Experiment in South Korea," Sustainability, MDPI, vol. 13(13), pages 1-10, June.
- Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
- Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
- Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
- Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022.
"The case of 100% electrification of domestic heat in Great Britain,"
Cambridge Working Papers in Economics
2210, Faculty of Economics, University of Cambridge.
- Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kleinertz, Britta & Brühl, Götz & von Roon, Serafin, 2019. "Heat dispatch centre – Symbiosis of heat generation units to reach cost efficient low emission heat supply," Energy, Elsevier, vol. 189(C).
- Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Wang, Jinda & Sun, Chunhua & Qi, Chengying & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2021. "Promoting the performance of district heating from waste heat recovery in China: A general solving framework based on the two-stage branch evaluation method," Energy, Elsevier, vol. 220(C).
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
- Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Nils Loose & Christian Thommessen & Jan Mehlich & Christian Derksen & Stefan Eicker, 2020. "Unified Energy Agents for Combined District Heating and Electrical Network Simulation," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
- Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
- Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
- Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
- Cynthia Boysen & Cord Kaldemeyer & Simon Hilpert & Ilja Tuschy, 2019. "Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
- Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
- Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
More about this item
Keywords
Regionalised heat demand; Power-to-heat capacities; Open data; Open source; Census special evaluation; Heating capacity classes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318483. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.