IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp21-35.html
   My bibliography  Save this article

A novel expander-depending natural gas pressure regulation configuration: Performance analysis

Author

Listed:
  • Xiong, Yaxuan
  • An, Shuo
  • Xu, Peng
  • Ding, Yulong
  • Li, Chuan
  • Zhang, Qunli
  • Chen, Hongbing

Abstract

Natural gas (NG) is delivered with abundant pressure energy from the gas station to various industrial users and residents. The commonly used Throttle Valve Pressure Regulation configuration can achieve stable downstream pressure, but the gas pressure loss is great. Additional turbines could be employed to recover the pressure energy, but hard to present a high efficiency. This work innovatively proposes an Expander-Depending Natural Gas Pressure Regulation configuration, which can regulate the NG pressure and harvest the pressure energy as well. A single screw expander is used to recover the pressure energy, whereby an air-source heat pump acts as a heat source to warm the cold gas. A thermodynamic model is established to evaluate the energy and exergy performance. Thermodynamic analyses show that the daily round-trip efficiency of the system, including both the NG source sector and the expander-depending NG pressure regulation sectors, can be more than 25% while the daily exergy efficiency and the daily power output of the expander-depending gas pressure regulation sector come up to 37.02% and 60.9 kWh respectively under the inlet NG pressure of 0.6 MPa and the outlet NG pressure of 0.1 MPa, and the volume flow rate from 30 Nm3/h to 350 Nm3/h. The round-trip efficiency, the exergy efficiency and the net power output dramatically increase with the isentropic efficiency improvement of the single screw expander. The proposed expander-depending natural gas pressure regulation unit can produce rich economic and environmental benefits and promise a bright future in the engineering application.

Suggested Citation

  • Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:21-35
    DOI: 10.1016/j.apenergy.2018.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kostowski, Wojciech J. & Usón, Sergio, 2013. "Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit," Applied Energy, Elsevier, vol. 101(C), pages 58-66.
    2. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    3. Arabkoohsar, A. & Machado, L. & Koury, R.N.N., 2016. "Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station," Energy, Elsevier, vol. 98(C), pages 78-91.
    4. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    5. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    6. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    7. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    8. Kim, Juwon & Noh, Yeelyong & Chang, Daejun, 2018. "Storage system for distributed-energy generation using liquid air combined with liquefied natural gas," Applied Energy, Elsevier, vol. 212(C), pages 1417-1432.
    9. Touretzky, Cara R. & McGuffin, Dana L. & Ziesmer, Jena C. & Baldea, Michael, 2016. "The effect of distributed electricity generation using natural gas on the electric and natural gas grids," Applied Energy, Elsevier, vol. 177(C), pages 500-514.
    10. Gerbec, Marko, 2010. "A reliability analysis of a natural-gas pressure-regulating installation," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1154-1163.
    11. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    12. Lu, Yuanwei & He, Wei & Wu, Yuting & Ji, Weining & Ma, Chongfang & Guo, Hang, 2013. "Performance study on compressed air refrigeration system based on single screw expander," Energy, Elsevier, vol. 55(C), pages 762-768.
    13. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    14. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    15. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    16. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    17. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Machado, L. & Koury, R.N.N., 2014. "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters," Renewable Energy, Elsevier, vol. 72(C), pages 258-270.
    18. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    19. Farzaneh-Gord, M. & Ghezelbash, R. & Arabkoohsar, A. & Pilevari, L. & Machado, L. & Koury, R.N.N., 2015. "Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption," Energy, Elsevier, vol. 83(C), pages 164-176.
    20. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    21. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    22. Sanaye, Sepehr & Mohammadi Nasab, Amir, 2012. "Modeling and optimizing a CHP system for natural gas pressure reduction plant," Energy, Elsevier, vol. 40(1), pages 358-369.
    23. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    24. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    25. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    26. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    2. Yahya Sheikhnejad & João Simões & Nelson Martins, 2020. "Energy Harvesting by a Novel Substitution for Expansion Valves: Special Focus on City Gate Stations of High-Pressure Natural Gas Pipelines," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Olfati, Mohammad & Bahiraei, Mehdi & Veysi, Farzad, 2019. "A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand," Energy, Elsevier, vol. 173(C), pages 598-609.
    4. Yao, Sheng & Zhang, Yufeng & Deng, Na & Yu, Xiaohui & Dong, Shengming, 2019. "Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions," Applied Energy, Elsevier, vol. 236(C), pages 1218-1230.
    5. Xu, Xiao & Cai, Liang & Chen, Tao & Zhan, Zhixing, 2021. "Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump," Energy, Elsevier, vol. 236(C).
    6. Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    2. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    3. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    4. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    5. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    6. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    7. Arabkoohsar, A. & Andresen, G.B., 2019. "Design and optimization of a novel system for trigeneration," Energy, Elsevier, vol. 168(C), pages 247-260.
    8. Xu, Xiao & Cai, Liang & Chen, Tao & Zhan, Zhixing, 2021. "Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump," Energy, Elsevier, vol. 236(C).
    9. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    10. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    11. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    12. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    13. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    14. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    15. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    16. Farzaneh-Kord, V. & Khoshnevis, A.B. & Arabkoohsar, A. & Deymi-Dashtebayaz, M. & Aghili, M. & Khatib, M. & Kargaran, M. & Farzaneh-Gord, M., 2016. "Defining a technical criterion for economic justification of employing CHP technology in city gate stations," Energy, Elsevier, vol. 111(C), pages 389-401.
    17. Hussam, Wisam K. & Rahbari, Hamid Reza & Arabkoohsar, Ahmad, 2020. "Off-design operation analysis of air-based high-temperature heat and power storage," Energy, Elsevier, vol. 196(C).
    18. Arabkoohsar, A. & Machado, L. & Koury, R.N.N., 2016. "Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station," Energy, Elsevier, vol. 98(C), pages 78-91.
    19. Arabkoohsar, A. & Andresen, G.B., 2017. "Design and analysis of the novel concept of high temperature heat and power storage," Energy, Elsevier, vol. 126(C), pages 21-33.
    20. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:21-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.