IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp164-176.html
   My bibliography  Save this article

Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption

Author

Listed:
  • Farzaneh-Gord, M.
  • Ghezelbash, R.
  • Arabkoohsar, A.
  • Pilevari, L.
  • Machado, L.
  • Koury, R.N.N.

Abstract

Natural gas stream must be preheated before pressure reduction takes place at natural gas pressure drop station (CGS). It ensures that the natural gas stream remains above hydrate-formation zone. The heater which is employed to provide the required heat consumes a huge amount of fuel. In this work, the conventional configuration of the natural gas pressure drop station is amended by taking advantage of geothermal energy to provide either all (if applicable) or a considerable portion of the required heat. To evaluate the proposed system in terms of economic and thermal efficiency, Gonbad Kavoos station has been chosen as a case study. Comprehensive thermo-economic analysis has been carried out on the proposed system. The results show that a system comprising 8 boreholes with 150 m depth and 0.15 m diameter each is the most efficient configuration for Gonbad Kavoos station. The achievable providence for the case study was calculated by technical correlations over the standard life time of geothermal systems. Comparison between the proposed system and the previous studied systems proved that the current configuration outperforms all the prior propounded configurations, with IRR (internal rate of return) = 0.155.

Suggested Citation

  • Farzaneh-Gord, M. & Ghezelbash, R. & Arabkoohsar, A. & Pilevari, L. & Machado, L. & Koury, R.N.N., 2015. "Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption," Energy, Elsevier, vol. 83(C), pages 164-176.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:164-176
    DOI: 10.1016/j.energy.2015.02.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahadori, Alireza & Zendehboudi, Sohrab & Zahedi, Gholamreza, 2013. "A review of geothermal energy resources in Australia: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 29-34.
    2. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    3. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Machado, L. & Koury, R.N.N., 2014. "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters," Renewable Energy, Elsevier, vol. 72(C), pages 258-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
    2. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    3. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    4. Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit," Energy, Elsevier, vol. 87(C), pages 520-539.
    5. Farzaneh-Kord, V. & Khoshnevis, A.B. & Arabkoohsar, A. & Deymi-Dashtebayaz, M. & Aghili, M. & Khatib, M. & Kargaran, M. & Farzaneh-Gord, M., 2016. "Defining a technical criterion for economic justification of employing CHP technology in city gate stations," Energy, Elsevier, vol. 111(C), pages 389-401.
    6. Arabkoohsar, A. & Machado, L. & Koury, R.N.N., 2016. "Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station," Energy, Elsevier, vol. 98(C), pages 78-91.
    7. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    8. Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
    9. Barone, Giovanni & Buonomano, Annamaria & Calise, Francesco & Forzano, Cesare & Palombo, Adolfo, 2019. "Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization," Energy, Elsevier, vol. 183(C), pages 1211-1232.
    10. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    11. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    12. Jaime Guerrero & Antonio Alcaide-Moreno & Ana González-Espinosa & Roberto Arévalo & Lev Tunkel & María Dolores Storch de Gracia & Eduardo García-Rosales, 2023. "Reducing Energy Consumption and CO 2 Emissions in Natural Gas Preheating Stations Using Vortex Tubes," Energies, MDPI, vol. 16(13), pages 1-20, June.
    13. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    14. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    15. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    16. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    17. Naderi, Mansoor & Ahmadi, Gholamreza & Zarringhalam, Majid & Akbari, Omidali & Khalili, Ebrahim, 2018. "Application of water reheating system for waste heat recovery in NG pressure reduction stations, with experimental verification," Energy, Elsevier, vol. 162(C), pages 1183-1192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    2. Mahdi Deymi-Dashtebayaz & Morteza Khorsand & Hamid Reza Rahbari, 2019. "Optimization of fuel consumption in natural gas city gate station based on gas hydrate temperature (Case study: Abbas Abad station)," Energy & Environment, , vol. 30(3), pages 408-426, May.
    3. Olfati, Mohammad & Bahiraei, Mehdi & Heidari, Setareh & Veysi, Farzad, 2018. "A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations," Energy, Elsevier, vol. 155(C), pages 721-733.
    4. Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
    5. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    6. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    7. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    8. Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
    9. Arabkoohsar, A. & Machado, L. & Koury, R.N.N., 2016. "Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station," Energy, Elsevier, vol. 98(C), pages 78-91.
    10. Arabkoohsar, A. & Andresen, G.B., 2017. "Design and analysis of the novel concept of high temperature heat and power storage," Energy, Elsevier, vol. 126(C), pages 21-33.
    11. Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit," Energy, Elsevier, vol. 87(C), pages 520-539.
    12. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    13. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    14. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    15. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    16. Zhao, Xin-gang & Wan, Guan, 2014. "Current situation and prospect of China׳s geothermal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 651-661.
    17. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    18. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Machado, L. & Koury, R.N.N., 2014. "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters," Renewable Energy, Elsevier, vol. 72(C), pages 258-270.
    19. Alizadeh, Araz & Ghadamian, Hossein & Aminy, Mohammad & Hoseinzadeh, Siamak & Khodayar Sahebi, Hamed & Sohani, Ali, 2022. "An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station," Energy, Elsevier, vol. 252(C).
    20. Piero Danieli & Gianluca Carraro & Andrea Lazzaretto, 2020. "Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks," Energies, MDPI, vol. 13(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:164-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.