IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp416-434.html
   My bibliography  Save this article

Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study

Author

Listed:
  • Ling-Chin, Janie
  • Roskilly, Anthony P.

Abstract

Marine transport has been essential for international trade. Concern for its environmental impact was growing among regulators, classification societies, ship operators, ship owners, and other stakeholders. By applying life cycle assessment, this article aimed to assess the impact of a new-build hybrid system (i.e. an electric power system which incorporated lithium ion batteries, photovoltaic systems and cold-ironing) designed for Roll-on/Roll-off cargo ships. The study was carried out based on a bottom-up integrated system approach using the optimised operational profile and background information for manufacturing processes, mass breakdown and end of life management plans. Resources such as metallic and non-metallic materials and energy required for manufacture, operation, maintenance, dismantling and scrap handling were estimated. During operation, 1.76×108kg of marine diesel oil was burned, releasing carbon monoxide, carbon dioxide, particulate matter, hydrocarbons, nitrogen oxides and sulphur dioxide which ranged 5–8 orders of magnitude. The operation of diesel gensets was the primary cause of impact categories that were relevant to particulate matter or respiratory inorganic health issues, photochemical ozone creation, eutrophication, acidification, global warming and human toxicity. Disposing metallic scrap was accountable for the most significant impact category, ecotoxicity potential. The environmental benefits of the hybrid power system in most impact categories were verified in comparison with a conventional power system onboard cargo ships. The estimated results for individual impact categories were verified using scenario analysis. The study concluded that the life cycle of a new-build hybrid power system would result in significant impact on the environment, human beings and natural reserves, and therefore proper management of such a system was imperative.

Suggested Citation

  • Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:416-434
    DOI: 10.1016/j.apenergy.2016.08.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    2. Hountalas, D.T. & Papagiannakis, R.G. & Zovanos, G. & Antonopoulos, A., 2014. "Comparative evaluation of various methodologies to account for the effect of load variation during cylinder pressure measurement of large scale two-stroke diesel engines," Applied Energy, Elsevier, vol. 113(C), pages 1027-1042.
    3. Johnson, Hannes & Styhre, Linda, 2015. "Increased energy efficiency in short sea shipping through decreased time in port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 167-178.
    4. Baldi, Francesco & Theotokatos, Gerasimos & Andersson, Karin, 2015. "Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation," Applied Energy, Elsevier, vol. 154(C), pages 402-415.
    5. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    6. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    7. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    8. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine," Applied Energy, Elsevier, vol. 149(C), pages 1-12.
    9. Johnson, Jeremiah & Reck, B.K. & Wang, T. & Graedel, T.E., 2008. "The energy benefit of stainless steel recycling," Energy Policy, Elsevier, vol. 36(1), pages 181-192, January.
    10. Sigurdsson, E. & Ingvorsen, K.M. & Jensen, M.V. & Mayer, S. & Matlok, S. & Walther, J.H., 2014. "Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines," Applied Energy, Elsevier, vol. 123(C), pages 37-46.
    11. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    12. Coppola, T. & Fantauzzi, M. & Lauria, D. & Pisani, C. & Quaranta, F., 2016. "A sustainable electrical interface to mitigate emissions due to power supply in ports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 816-823.
    13. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    14. Walsh, Conor & Bows, Alice, 2012. "Size matters: Exploring the importance of vessel characteristics to inform estimates of shipping emissions," Applied Energy, Elsevier, vol. 98(C), pages 128-137.
    15. Kowalski, Jerzy, 2015. "Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines," Applied Energy, Elsevier, vol. 150(C), pages 1-8.
    16. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    17. Zhao, Feiyang & Yang, Wenming & Tan, Woei Wan & Yu, Wenbin & Yang, Jiasheng & Chou, Siaw Kiang, 2016. "Power management of vessel propulsion system for thrust efficiency and emissions mitigation," Applied Energy, Elsevier, vol. 161(C), pages 124-132.
    18. Strazza, C. & Del Borghi, A. & Costamagna, P. & Traverso, A. & Santin, M., 2010. "Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships," Applied Energy, Elsevier, vol. 87(5), pages 1670-1678, May.
    19. Ovrum, E. & Bergh, T.F., 2015. "Modelling lithium-ion battery hybrid ship crane operation," Applied Energy, Elsevier, vol. 152(C), pages 162-172.
    20. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    21. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
    22. Guan, Cong & Theotokatos, Gerasimos & Zhou, Peilin & Chen, Hui, 2014. "Computational investigation of a large containership propulsion engine operation at slow steaming conditions," Applied Energy, Elsevier, vol. 130(C), pages 370-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haibin Wang & Myo Zin Aung & Xue Xu & Evangelos Boulougouris, 2023. "Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    2. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    3. Son-Tung Le & Trung-Hieu Nguyen, 2023. "The Development of Green Ports in Emerging Nations: A Case Study of Vietnam," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    4. Vakili, Seyedvahid & Ölçer, Aykut I., 2023. "Are battery-powered vessels the best solution for the domestic ferry segment? Case study for the domestic ferry segment in the Philippines," Energy, Elsevier, vol. 282(C).
    5. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.
    7. Jeong, Byongug & Oguz, Elif & Wang, Haibin & Zhou, Peilin, 2018. "Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives," Applied Energy, Elsevier, vol. 230(C), pages 1065-1081.
    8. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    10. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    11. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    12. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    3. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    4. Geertsma, R.D. & Visser, K. & Negenborn, R.R., 2018. "Adaptive pitch control for ships with diesel mechanical and hybrid propulsion," Applied Energy, Elsevier, vol. 228(C), pages 2490-2509.
    5. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    6. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    7. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.
    8. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    9. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    11. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    12. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    13. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper & Glarborg, Peter & Mayer, Stefan, 2017. "Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 193(C), pages 60-73.
    14. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    15. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    16. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    18. Maria Faruoli & Alessandro Coclite & Annarita Viggiano & Paolo Caso & Vinicio Magi, 2021. "A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation," Energies, MDPI, vol. 14(21), pages 1-19, November.
    19. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    20. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:416-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.