IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp55-70.html
   My bibliography  Save this article

Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability

Author

Listed:
  • Tang, Yuanyuan
  • Zhang, Jundong
  • Gan, Huibing
  • Jia, Baozhu
  • Xia, Yu

Abstract

The in-cylinder pressure is an important parameter for the diesel engine but it fails to be used in the common scenes, like the control, hardware in loop, and virtual reality, for its lack of real-time capability. In order to have this capability, the conventional diesel engine models are ameliorated (named as MG model, the merged diesel engine model). These parameters that exclude the in-cylinder pressure and indicator torque are calculated by mean value model, the widely used model for real-time applications, to keep on its speed. The other parameters are calculated by the 0D model. To improve the in-cylinder pressure calculation speed, the simplification and asychronization are used. The compression, combustion, and expansion processes are calculated the same as 0D assumption but the exhausting and scavenging processes are simplified by two linear functions. Its calculation time saves about 33.3% comparing to the conventional 0D approach. The boundaries of cylinder model are asynchronous with the scavenging and exhausting manifolds by abandoning cylinder cycles at reasonable intervals so that the time can be reduced further. In practical coding, the in-cylinder pressure needs to be calculated by a parallel thread to realize asychronization. In the case that abandons 4 cycles every 5 cycles the calculation time saves nearly 80% further. Only during the dynamic process, is the reduced time positively correlated with the number of abandoned cycles. The proposed model is calibrated against shop test data, whose predicting accuracy is comparable to the 0D model. The maximum relative errors of steady MG model and steady 0D model are 3.96% and −3.23%, and the mean relative errors are 1.38% and 2.18%. In the case that abandons 4 engine cycles, the maximum relative error of explosion pressure is 0.363% during the dynamic process. This model can be used in real-time HIL, controller design, engine analysis, and simulator.

Suggested Citation

  • Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:55-70
    DOI: 10.1016/j.apenergy.2017.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917302337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    2. Maroteaux, Fadila & Saad, Charbel, 2015. "Combined mean value engine model and crank angle resolved in-cylinder modeling with NOx emissions model for real-time Diesel engine simulations at high engine speed," Energy, Elsevier, vol. 88(C), pages 515-527.
    3. Galindo, J. & Fajardo, P. & Navarro, R. & García-Cuevas, L.M., 2013. "Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling," Applied Energy, Elsevier, vol. 103(C), pages 116-127.
    4. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    5. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    6. Bolan Liu & Xiaowei Ai & Pan Liu & Chuang Zhang & Xingqi Hu & Tianpu Dong, 2015. "Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration," Energies, MDPI, vol. 8(9), pages 1-14, September.
    7. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    8. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    9. Fang, Xiande & Xu, Yu, 2011. "Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis," Energy, Elsevier, vol. 36(5), pages 2937-2942.
    10. Baldi, Francesco & Theotokatos, Gerasimos & Andersson, Karin, 2015. "Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation," Applied Energy, Elsevier, vol. 154(C), pages 402-415.
    11. Wang, Jinli & Yang, Fuyuan & Ouyang, Minggao, 2015. "Dieseline fueled flexible fuel compression ignition engine control based on in-cylinder pressure sensor," Applied Energy, Elsevier, vol. 159(C), pages 87-96.
    12. Gnana Sagaya Raj, Antony Raj & Mallikarjuna, Jawali Maharudrappa & Ganesan, Venkitachalam, 2013. "Energy efficient piston configuration for effective air motion – A CFD study," Applied Energy, Elsevier, vol. 102(C), pages 347-354.
    13. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    14. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    15. Tianpu Dong & Fujun Zhang & Bolan Liu & Xiaohui An, 2015. "Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System," Energies, MDPI, vol. 8(6), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    2. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    3. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    4. Qinpeng Wang & Heming Yao & Yonghua Yu & Jianguo Yang & Yuhai He, 2021. "Establishment of a Real-Time Simulation of a Marine High-Pressure Common Rail System," Energies, MDPI, vol. 14(17), pages 1-17, September.
    5. Evangelos G. Giakoumis & George Triantafillou, 2018. "Analysis of the Effect of Vehicle, Driving and Road Parameters on the Transient Performance and Emissions of a Turbocharged Truck," Energies, MDPI, vol. 11(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    2. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    3. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    4. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    5. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    6. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    7. Geertsma, R.D. & Visser, K. & Negenborn, R.R., 2018. "Adaptive pitch control for ships with diesel mechanical and hybrid propulsion," Applied Energy, Elsevier, vol. 228(C), pages 2490-2509.
    8. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.
    9. Liu, Zheng & Copeland, Colin, 2018. "New method for mapping radial turbines exposed to pulsating flows," Energy, Elsevier, vol. 162(C), pages 1205-1222.
    10. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    11. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    12. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    13. Tregenza, Owen & Olshina, Noam & Hield, Peter & Manzie, Chris & Hulston, Chris, 2022. "A comparison of turbine mass flow models based on pragmatic identification data sets for turbogenerator model development," Energy, Elsevier, vol. 247(C).
    14. Tauzia, Xavier & Maiboom, Alain & Karaky, Hassan, 2017. "Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions," Applied Energy, Elsevier, vol. 208(C), pages 1505-1518.
    15. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    16. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    17. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    18. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.
    19. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    20. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:55-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.