IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12946-d1226849.html
   My bibliography  Save this article

Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System

Author

Listed:
  • Haibin Wang

    (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Myo Zin Aung

    (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Xue Xu

    (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Evangelos Boulougouris

    (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

Abstract

The latest International Maritime Organization strategies aim to reduce 70% of the CO 2 emissions and 50% of the Greenhouse Gas (GHG) emissions from maritime activities by 2050, compared to 2008 levels. The EU has set up goals to reduce GHG emissions by at least 55% by 2030, compared to 1990, and achieve net-zero GHG emissions by 2050. The UK aims to achieve more than 68% GHG emission reduction by 2030 and net-zero GHG emissions by 2050. There are many solutions under development to tackle the challenge of meeting the latest decarbonization strategies from the IMO, EU, and UK, among which are hydrogen powered marine vessels. This paper presents a life cycle analysis study for hydrogen fuelled vessels by evaluating their performance in terms of environmental friendliness and economic feasibility. The LCA study will consider the gas emissions and costs during the life stages of the ships, including the construction, operation, maintenance, and recycling phases of the selected vessels. The results of the comparisons with the conventional version of the ships (driven by diesel generators) demonstrate the benefits of using hydrogen for marine transportation: over 80% emission reduction and around 60% life cycle cost savings. A sensitivity analysis shows that the prices of fuels and carbon credits can affect the life cycle cost, and recommendations for low H2 price and high carbon credit in the future are provided to attract the industry to adopt the new fuel.

Suggested Citation

  • Haibin Wang & Myo Zin Aung & Xue Xu & Evangelos Boulougouris, 2023. "Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12946-:d:1226849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marialisa Nigro & Massimo De Domenico & Tiziana Murgia & Arianna Stimilli, 2024. "The Port Sector in Italy: Its Keystones for Energy-Efficient Growth," Energies, MDPI, vol. 17(7), pages 1-30, April.
    2. Hamid Reza Soltani Motlagh & Seyed Behbood Issa Zadeh & Claudia Lizette Garay-Rondero, 2023. "Towards International Maritime Organization Carbon Targets: A Multi-Criteria Decision-Making Analysis for Sustainable Container Shipping," Sustainability, MDPI, vol. 15(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    2. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.
    3. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    5. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    6. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    8. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    9. Son-Tung Le & Trung-Hieu Nguyen, 2023. "The Development of Green Ports in Emerging Nations: A Case Study of Vietnam," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    10. Vakili, Seyedvahid & Ölçer, Aykut I., 2023. "Are battery-powered vessels the best solution for the domestic ferry segment? Case study for the domestic ferry segment in the Philippines," Energy, Elsevier, vol. 282(C).
    11. Jeong, Byongug & Oguz, Elif & Wang, Haibin & Zhou, Peilin, 2018. "Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives," Applied Energy, Elsevier, vol. 230(C), pages 1065-1081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12946-:d:1226849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.