IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v161y2016icp656-672.html
   My bibliography  Save this article

Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap

Author

Listed:
  • Porzio, Giacomo Filippo
  • Colla, Valentina
  • Fornai, Barbara
  • Vannucci, Marco
  • Larsson, Mikael
  • Stripple, Håkan

Abstract

The use of Zinc-coated steel (e.g. galvanized steel) in melting cycles based on Electric Arc Furnaces can increase the production of harmful dust and hazardous air emissions. This article describes a novel process to simultaneously preheat and remove the coating from the scrap surface before the melting phase. The zinc in coating is removed in the gas phase by chloride containing syngas combustion and collected in a dedicated recovery system. Two possible innovative process routes are described, which involve plastic waste pre-treatment, shredded plastic gasification/pyrolysis, steel scrap preheating and zinc recovery processes. The routes have been modeled in an integrated flowsheet, in order to allow a comprehensive simulation and optimization of the pretreatment processes. The process optimization results in possible energy savings of over 300MJ/t of preheated scrap charged in the Electric Arc Furnace for steel production. Moreover, a comparison among different scenarios according to economic and environmental criteria has been carried out.

Suggested Citation

  • Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
  • Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:656-672
    DOI: 10.1016/j.apenergy.2015.08.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    2. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    3. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
    4. Afrane, George & Ntiamoah, Augustine, 2012. "Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana," Applied Energy, Elsevier, vol. 98(C), pages 301-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    2. Matino, Ismael & Colla, Valentina & Baragiola, Stefano, 2017. "Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability," Applied Energy, Elsevier, vol. 207(C), pages 543-552.
    3. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    4. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    5. Teresa Annunziata Branca & Barbara Fornai & Valentina Colla & Maria Ilaria Pistelli & Eros Luciano Faraci & Filippo Cirilli & Antonius Johannes Schröder, 2021. "Industrial Symbiosis and Energy Efficiency in European Process Industries: A Review," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    6. Yang, Yong-cong & Nie, Pu-yan, 2022. "Subsidy for clean innovation considered technological spillover," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    3. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    5. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    6. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    7. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    8. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    9. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    10. Zetterholm, J. & Ji, X. & Sundelin, B. & Martin, P.M. & Wang, C., 2017. "Dynamic modelling for the hot blast stove," Applied Energy, Elsevier, vol. 185(P2), pages 2142-2150.
    11. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    12. Yue Dou & Muhammad Shahbaz & Kangyin Dong & Xiucheng Dong, 2022. "How natural disasters affect carbon emissions: the global case," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1875-1901, September.
    13. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    14. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    15. Maradin Dario & Cerović Ljerka & Mjeda Trina, 2017. "Economic Effects of Renewable Energy Technologies," Naše gospodarstvo/Our economy, Sciendo, vol. 63(2), pages 49-59, June.
    16. Patel, Sameer & Khandelwal, Anish & Leavey, Anna & Biswas, Pratim, 2016. "A model for cost-benefit analysis of cooking fuel alternatives from a rural Indian household perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 291-302.
    17. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
    18. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    19. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    20. Juxian Hao & Xiancong Zhao & Hao Bai, 2017. "Collaborative Scheduling between OSPPs and Gasholders in Steel Mill under Time-of-Use Power Price," Energies, MDPI, vol. 10(8), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:161:y:2016:i:c:p:656-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.