IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v311y2025ics0378377425000927.html
   My bibliography  Save this article

Trigger thresholds and propagation mechanism of meteorological drought to agricultural drought in an inland river basin

Author

Listed:
  • Wang, Lin
  • Wei, Wei
  • Wang, Lixin
  • Chen, Shengnan
  • Duan, Weili
  • Zhang, Qiang
  • Tong, Bing
  • Han, Zhiming
  • Li, Zhi
  • Chen, Liding

Abstract

Quantifying the thresholds and processes of drought propagation is of great significance for early drought warning and ecosystem management. Our understanding of their spatial patterns and driving mechanism remains unclear. In this study, based on Copula functions, we quantified the thresholds and process of meteorological drought to agricultural drought in an alpine-oasis-desert inland river basin of China for the period of 1980–2020. Furthermore, the main factors driving drought propagation were identified using the Random Forest model. The results showed that: (1) significant spatial heterogeneity exists in the propagation of meteorological to agricultural drought, with longer propagation time and higher propagation risk in the upstream; (2) from upstream to downstream, the percentile-based average cumulative precipitation deficit threshold for triggering agricultural drought ranged from 18.5 % to 45.0 % under moderate probability conditions (greater than 0.6); (3) the response of agricultural drought to meteorological drought was characterized by intensity amplification and duration attenuation in the upstream, while the opposite occurred downstream. This response is mainly driven by the interactions of actual evapotranspiration (ETa) and vapor pressure deficit (VPD). Specifically, ETa and VPD contributed 15.7 %–54.8 % and 8.7 %–39.5 %, respectively. Additionally, irrigation also plays an important role in drought propagation, contributing 6.5 %–9.6 %. This study provides important implications and valuable insights for understanding the mechanisms of agricultural drought formation. Furthermore, the results can provide scientific guidance for watershed water allocation, drought preparedness and risk management.

Suggested Citation

  • Wang, Lin & Wei, Wei & Wang, Lixin & Chen, Shengnan & Duan, Weili & Zhang, Qiang & Tong, Bing & Han, Zhiming & Li, Zhi & Chen, Liding, 2025. "Trigger thresholds and propagation mechanism of meteorological drought to agricultural drought in an inland river basin," Agricultural Water Management, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000927
    DOI: 10.1016/j.agwat.2025.109378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Keke & Li, Jianzhu & Zhang, Ting & Kang, Aiqing, 2021. "The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    3. Fawen, Li & Manjing, Zhang & Yong, Zhao & Rengui, Jiang, 2023. "Influence of irrigation and groundwater on the propagation of meteorological drought to agricultural drought," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Wenzhe Jiao & Lixin Wang & William K. Smith & Qing Chang & Honglang Wang & Paolo D’Odorico, 2021. "Observed increasing water constraint on vegetation growth over the last three decades," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Felicia Chiang & Omid Mazdiyasni & Amir AghaKouchak, 2021. "Evidence of anthropogenic impacts on global drought frequency, duration, and intensity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    8. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    9. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qing & Wang, Peijuan & Li, Yang & Tang, Junxian & Li, Xin & Zhang, Yuanda & Han, Dianchen & Wang, Qi & Zhao, Yuncheng & Yang, Zaiqiang, 2025. "Hazard assessment of compound drought and heat events on summer maize from agricultural and meteorological perspectives," Agricultural Water Management, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Huazhu Xue & Ruirui Zhang & Wenfei Luan & Zhanliang Yuan, 2024. "The Spatiotemporal Variations in and Propagation of Meteorological, Agricultural, and Groundwater Droughts in Henan Province, China," Agriculture, MDPI, vol. 14(10), pages 1-28, October.
    3. Yang, Cuiping & Liu, Changhong & Xing, Xuguang & Ma, Xiaoyi, 2025. "Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model," Agricultural Water Management, Elsevier, vol. 313(C).
    4. Hou, Miaolei & Li, Yi & Biswas, Asim & Chen, Xinguo & Xie, Lulu & Liu, Deli & Li, Linchao & Feng, Hao & Wu, Shufang & Satoh, Yusuke & Pulatov, Alim & Siddique, Kadambot H.M., 2024. "Concurrent drought threatens wheat and maize production and will widen crop yield gaps in the future," Agricultural Systems, Elsevier, vol. 220(C).
    5. Zhang, Tao & Qiu, Rangjian & Ding, Risheng & Wu, Jingwei & Clothier, Brent, 2023. "Multi-scale spectral characteristics of latent heat flux over flooded rice and winter wheat rotation system," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Kheyruri, Yusef & Sharafati, Ahmad & Neshat, Aminreza, 2023. "The socioeconomic impact of severe droughts on agricultural lands over different provinces of Iran," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Ming Li & Guiwen Wang & Shengwei Zong & Xurong Chai, 2023. "Copula-Based Assessment and Regionalization of Drought Risk in China," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
    8. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    9. Federica Alfani & Vasco Molini & Giacomo Pallante & Alessandro PalmaGran, 2024. "Job displacement and reallocation failure. Evidence from climate shocks in Morocco," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(1), pages 1-31.
    10. F. Todisco & F. Mannocchi & L. Vergni, 2013. "Severity–duration–frequency curves in the mitigation of drought impact: an agricultural case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1863-1881, February.
    11. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    12. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    13. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    14. Chhanda Ruj & Aloke Majumdar & Somnath Ghosal, 2022. "Political ecology and hydrosocial relation: a study on drought and associated migration in a semi-arid district of West Bengal, India," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 709-734, December.
    15. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    16. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    17. Gholami Zali, Ali & Ehsanzadeh, Parviz, 2018. "Exogenously applied proline as a tool to enhance water use efficiency: Case of fennel," Agricultural Water Management, Elsevier, vol. 197(C), pages 138-146.
    18. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    19. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    20. Lamneithem Hangshing & Parmendra P. Dabral, 2018. "Multivariate Frequency Analysis of Meteorological Drought Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1741-1758, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.