IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics0378377425001829.html
   My bibliography  Save this article

Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model

Author

Listed:
  • Yang, Cuiping
  • Liu, Changhong
  • Xing, Xuguang
  • Ma, Xiaoyi

Abstract

Meteorological droughts are propagated through atmospheric and hydrological cycles, ultimately triggering agricultural droughts. Accurate prediction of future meteorological to agricultural drought propagation is essential for developing early warning systems and managing agricultural water resources. However, the thresholds at which meteorological drought induce agricultural drought remains unclear. In this study, a drought propagation threshold framework based on a Copula-Bayesian model was developed to estimate the propagation time, probability, and triggering thresholds of meteorological drought to agricultural drought in China under future scenarios. The results indicated that meteorological and agricultural drought indices were projected to exhibit declining trends in the future, suggesting the intensification of drought severity across China. The drought propagation time was expected to shorten by 1.6–3 months in the future. Furthermore, the conditional probability for the propagation of meteorological droughts of varying severity to agricultural droughts was projected to increase by 10.9–26.4 %. Southern China (SC) and the Yangtze River Basin (YRB) regions emerged as high-risk regions for drought propagation, where average conditional probabilities were 57.2–65.1 % and 49.1–57.4 %, respectively. The drought propagation thresholds were projected to increase in the future, indicating heightened vulnerability of agricultural droughts to meteorological droughts. The triggering thresholds for drought in SC (−0.99 to −0.87) and YRB (−1.20 to −0.94) were relatively high, where even mild meteorological droughts would induce moderate agricultural droughts in the future. By contrast, the predicted trigger thresholds were relatively low for the Northeast China Plain (−1.92 to −1.65) and North China Plain (−1.69 to −1.50). Across China, temperature emerged as the primary driver of changes in trigger thresholds, with its relative contribution estimated to be 43.1–47.2 %. Climate warming was projected to increase the future trigger thresholds in China. The findings assist policymakers in formulating effective agricultural management strategies to address future agricultural drought risks.

Suggested Citation

  • Yang, Cuiping & Liu, Changhong & Xing, Xuguang & Ma, Xiaoyi, 2025. "Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001829
    DOI: 10.1016/j.agwat.2025.109468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.