IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000180.html
   My bibliography  Save this article

Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming

Author

Listed:
  • Zhang, Q.
  • Li, Y.P.
  • Huang, G.H.
  • Wang, H.
  • Li, Y.F.
  • Shen, Z.Y.

Abstract

Agricultural drought (AD) is disastrous to crop production and plant growth. The prediction of AD with sufficient lead time is helpful for developing agricultural water strategy, particularly under the context of global warming. However, the previous studies mainly focused on short lead times (1–6 months) and only used 3 or less variables to predict AD through copula models. In this study, a novel multivariate time series convolutional neural network (T-CNN) is developed to predict AD with long lead times based on multiple meteorological variables. To demonstrate its feasibility and novelty, T-CNN is used in the Aral Sea Basin (ASB) where agricultural production is dominant. Three global climate models (GCMs) and three shared socioeconomic pathways (SSPs) from CMIP6 are considered during 2026–2100. Results indicate that (1) precipitation, temperature, potential evapotranspiration, relative humidity and northward wind are significantly correlated with AD, and are selected as the predictors of AD; (2) compared with the conventional CNN and convolutional long short-term memory (ConvLSTM), T-CNN’s performance is better, taking only about 10% of the computation time of ConvLSTM; (3) T-CNN can effectively extract the spatiotemporal characteristics of meteorological predictors and reproduce AD, showing high correlation coefficients (R>0.9) for 92.5% of the grids across ASB; (4) the result of simple model averaging (SMA) is better than other GCMs, indicating that the spatial differences in AD would become more pronounced with increasing time and emission level; (5) compared with the historical period, under SSP585, the extreme drought would increase 0.20 months/year (2026–2050), 0.23 months/year (2051–2075) and 0.28 months/year (2076–2100). The results highlight the spatiotemporal variation of AD in 21st century with a high resolution (0.1°×0.1°), which can provide scientific support for agricultural water management and long-term drought prevention in ASB.

Suggested Citation

  • Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000180
    DOI: 10.1016/j.agwat.2024.108683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.