IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v308y2025ics0378377425000174.html
   My bibliography  Save this article

A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning

Author

Listed:
  • Chen, Hao
  • Yang, Ni
  • Song, Xuanhua
  • Lu, Chunhua
  • Lu, Menglan
  • Chen, Tan
  • Deng, Shulin

Abstract

Drought is a frequent, destructive, and complex natural hazard, and seriously threatens eco-environment, socio-economy, and the health of human. Previous studies suggested that integrated multi-source remote sensing drought indices have the potential to comprehensively monitor drought conditions, however most existing integrated drought indices still have several limitations. Here, we used solar-induced chlorophyll fluorescence, water balance, soil moisture, and land surface temperature to develop a new integrated remote sensing drought index, namely interpretable machine learning drought index (IMLDI), based on the Bayesian optimized tree-based Light Gradient Boosting Machine and SHapley Additive exPlainations. The different land cover types were further considered, and the categories of drought severity were objectively determined by the iterative optimized method. The drought monitoring performance of IMLDI was validated in the eastern parts of China, and three integrated drought indies composited by PCA, multiple linear regression, and gradient boosting method were also included for comparison. The results show that IMLDI has a higher spatial and temporal consistency with standardized precipitation evapotranspiration index, can better reflect the real-world observed drought-affected cropland areas and gross primary production, and can also well describe the evolutions of 2009/2010 and 2019 drought events in the eastern parts of China, indicating higher drought monitoring performance of IMLDI. Besides, IMLDI-based agricultural drought risk analysis shows that the Huang-Hai Region and Yunnan, Guizhou, and Guangxi Provinces have a high risk to suffer from severe agricultural droughts. Overall, IMLDI has a great potential to use as a new integrated remote sensing drought index for agricultural drought monitoring.

Suggested Citation

  • Chen, Hao & Yang, Ni & Song, Xuanhua & Lu, Chunhua & Lu, Menglan & Chen, Tan & Deng, Shulin, 2025. "A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning," Agricultural Water Management, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000174
    DOI: 10.1016/j.agwat.2025.109303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Zhenheng & Sun, Hao & Zhang, Tian & Xu, Huanyu & Wu, Dan & Gao, JinHua, 2023. "Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China," Agricultural Water Management, Elsevier, vol. 286(C).
    2. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    4. Feng, Puyu & Wang, Bin & Liu, De Li & Yu, Qiang, 2019. "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 173(C), pages 303-316.
    5. Wu, Dong & Li, Zhenhong & Zhu, Yongchao & Li, Xuan & Wu, Yingjie & Fang, Shibo, 2021. "A new agricultural drought index for monitoring the water stress of winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Gustavo Naumann & Carmelo Cammalleri & Lorenzo Mentaschi & Luc Feyen, 2021. "Increased economic drought impacts in Europe with anthropogenic warming," Nature Climate Change, Nature, vol. 11(6), pages 485-491, June.
    7. Qiongjie Kou & Quanyou Zhang & Laiqun Xu & Yaohui Li & Yong Feng & Huiting Wei, 2022. "Mobile Learning Strategy Based on Principal Component Analysis," International Journal of Information Systems in the Service Sector (IJISSS), IGI Global, vol. 14(3), pages 1-12, July.
    8. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Zixuan & Ye, Yuchen & Sun, Lian & Yuan, Chaoxia & Cai, Yanpeng & Xie, Yulei & Cheng, Guanhui & Zhang, Pingping, 2025. "Development of an indicator system for solar-induced chlorophyll fluorescence monitoring to enhance early warning of flash drought," Agricultural Water Management, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    2. Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).
    3. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Xiong, Yanfei & Zhang, Anlu & Liu, Mengba & Zhang, Xue & Cheng, Qi, 2024. "Drought risk assessment for citrus and its mitigation resistance under climate change and crop specialization: A case study of southern Jiangxi, China," Agricultural Water Management, Elsevier, vol. 306(C).
    5. Xu, Zhenheng & Sun, Hao & Zhang, Tian & Xu, Huanyu & Wu, Dan & Gao, JinHua, 2023. "Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China," Agricultural Water Management, Elsevier, vol. 286(C).
    6. Cem Polat Cetinkaya & Mert Can Gunacti, 2024. "Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator," Agriculture, MDPI, vol. 14(3), pages 1-15, March.
    7. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    8. Mehrtash Eskandaripour & Shahrokh Soltaninia, 2025. "Trivariate frequency analysis of droughts characteristics in Kerman city using asymmetric copula functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10277-10298, May.
    9. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    10. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    11. Rui Li & Jing’ai Wang & Tianjie Zhao & Jiancheng Shi, 2016. "Index-based evaluation of vegetation response to meteorological drought in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2179-2193, December.
    12. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    13. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    14. Ruchika Nanwani & Md Mahmudul Hasan & Silvia Cirstea, 2023. "Techniques used to predict climate risks: a brief literature survey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 925-951, September.
    15. Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
    16. Guimbeau, Amanda & Ji, Xinde James & Menon, Nidhiya, 2024. "Climate Shocks, Intimate Partner Violence, and the Protective Role of Climate-Resilience Projects," IZA Discussion Papers 17529, Institute of Labor Economics (IZA).
    17. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Wang, Xinzhi & Lin, Qingxia & Wu, Zhiyong & Zhang, Yuliang & Li, Changwen & Liu, Ji & Zhang, Shinan & Li, Songyu, 2025. "Agricultural GDP exposure to drought and its machine learning-based prediction in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 307(C).
    19. Tuan Minh Cao & Sang Hyeon Lee & Ji Yong Lee, 2023. "The Impact of Natural Disasters and Pest Infestations on Technical Efficiency in Rice Production: A Study in Vietnam," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    20. Jianmin Zhang & Renguang Wu & Xiaojing Jia, 2025. "Interdecadal changes in persistent drought over Asia under phase transitions of the Atlantic Multidecadal Oscillation," Climatic Change, Springer, vol. 178(5), pages 1-19, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.