IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422002815.html
   My bibliography  Save this article

Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective

Author

Listed:
  • Campana, P.E.
  • Lastanao, P.
  • Zainali, S.
  • Zhang, J.
  • Landelius, T.
  • Melton, F.

Abstract

The 2018 drought in Sweden prompted questions about climate-adaptation and -mitigation measures – especially in the agricultural sector, which suffered the most. This study applies a water–food–energy nexus modelling framework to evaluate drought impacts on irrigation and agriculture in Sweden using 2018 and 2019 as case studies. A previous water–food–energy nexus model was updated to facilitate an investigation of the benefits of data-driven irrigation scheduling as compared to existing irrigation guidelines. Moreover, the benefits of assimilating earth observation data in the crop model have been explored. The assimilation of leaf area index data from the Copernicus Global Land Service improves the crop yield estimation as compared to default crop model parameters. The results show that the irrigation water productivities of the proposed model are measurably improved compared to conventional and static irrigation guidelines for both 2018 and 2019. This is mostly due to the advantage of the proposed model in providing evapotranspiration in cultural condition (ETc)-driven guidelines by using spatially explicit data generated by mesoscale models from the Swedish Meteorological and Hydrological Institute. During the drought year 2018, the developed model showed no irrigation water savings as compared to irrigation scenarios based on conventional irrigation guidelines. Nevertheless, the crop yield increase from the proposed irrigation management system varied between 10% and 60% as compared to conventional irrigation scenarios. During a normal year, the proposed irrigation management system leads to significant water savings as compared to conventional irrigation guidelines. The modelling results show that temperature stress during the 2018 drought also played a key role in reducing crop yields, with yield reductions of up to 30%. From a water–food–energy nexus, this motivates the implementation of new technologies to reduce water and temperature stress to mitigate likely negative effects of climate change and extremes. By using an open-source package for Google Earth®, a demonstrator of cost-effective visualization platform is developed for helping farmers, and water- and energy-management agencies to better understand the connections between water and energy use, and food production. This can be significant, especially during the occurrence of extreme events, but also to adapt to the negative effects on agricultural production of climate changes.

Suggested Citation

  • Campana, P.E. & Lastanao, P. & Zainali, S. & Zhang, J. & Landelius, T. & Melton, F., 2022. "Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422002815
    DOI: 10.1016/j.agwat.2022.107734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    2. Vijay Anand Rajasekaran & Kumar K. R. & Susi S. & Mohan Y. C. & Muntha Raju & Mohammed Waheeduddin Hssain, 2022. "An Evaluation of E-Learning and User Satisfaction," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 17(2), pages 1-11, March.
    3. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    5. Ko, Jonghan & Piccinni, Giovanni, 2009. "Corn yield responses under crop evapotranspiration-based irrigation management," Agricultural Water Management, Elsevier, vol. 96(5), pages 799-808, May.
    6. ., 2022. "Alternative decisions, consequences and evaluations," Chapters, in: The Economic Analysis of Civil Law, chapter 1, pages 15-20, Edward Elgar Publishing.
    7. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    8. Chenyang Jiang & Wenhao Wang & Linlin Du & Guanyu Huang & Caitlin McConaghy & Stanley Fineman & Yang Liu, 2022. "Field Evaluation of an Automated Pollen Sensor," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    9. Meizhi Jiang & Jing Lu & Zhuohua Qu & Zaili Yang, 2022. "Safety evaluation of the ports along the Maritime Silk Road," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(6), pages 797-819, August.
    10. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    11. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    12. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    13. Grusson, Youen & Wesström, Ingrid & Svedberg, Elina & Joel, Abraham, 2021. "Influence of climate change on water partitioning in agricultural watersheds: Examples from Sweden," Agricultural Water Management, Elsevier, vol. 249(C).
    14. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Kaddoura, Saeed & El Khatib, Sameh, 2017. "Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making," Environmental Science & Policy, Elsevier, vol. 77(C), pages 114-121.
    17. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    18. Zhang, Jie & Campana, Pietro Elia & Yao, Tian & Zhang, Yang & Lundblad, Anders & Melton, Forrest & Yan, Jinyue, 2018. "The water-food-energy nexus optimization approach to combat agricultural drought: a case study in the United States," Applied Energy, Elsevier, vol. 227(C), pages 449-464.
    19. Espinosa-Tasón, Jaime & Berbel, Julio & Gutiérrez-Martín, Carlos, 2020. "Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017," Agricultural Water Management, Elsevier, vol. 233(C).
    20. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    21. Grusson, Youen & Wesström, Ingrid & Joel, Abraham, 2021. "Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need," Agricultural Water Management, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Rezaei Kalvani & Fulvio Celico, 2023. "The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Carlo Andrea Bollino & Marzio Galeotti, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," Working Papers 2021.06, Fondazione Eni Enrico Mattei.
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    5. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    6. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    7. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    8. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Hongfang Li & Huixiao Wang & Yaxue Yang & Ruxin Zhao, 2021. "Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    10. Víctor Correa-Porcel & Laura Piedra-Muñoz & Emilio Galdeano-Gómez, 2021. "Water–Energy–Food Nexus in the Agri-Food Sector: Research Trends and Innovating Practices," IJERPH, MDPI, vol. 18(24), pages 1-31, December.
    11. Jing-Li Fan & Qian Wang & Xian Zhang, 2021. "A bibliometric analysis of the water-energy-food nexus based on the SCIE and SSCI database of the Web of Science," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-26, February.
    12. He, Liuyue & Xue, Jingyuan & Wang, Sufen, 2023. "WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    14. Vanesa Rodríguez-Merchan & Claudia Ulloa-Tesser & Yannay Casas-Ledón, 2019. "Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case," Energies, MDPI, vol. 13(1), pages 1-20, December.
    15. Mohammed Sakib Uddin & Khaled Mahmud & Bijoy Mitra & Al-Ekram Elahee Hridoy & Syed Masiur Rahman & Md Shafiullah & Md. Shafiul Alam & Md. Ismail Hossain & Mohammad Sujauddin, 2023. "Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    16. Lu, Shibao & Zhang, Xiaoling & Peng, Huarong & Skitmore, Martin & Bai, Xiao & Zheng, Zhihong, 2021. "The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. He, Guohua & Geng, Chenfan & Zhao, Yong & Wang, Jianhua & Jiang, Shan & Zhu, Yongnan & Wang, Qingming & Wang, Lizhen & Mu, Xing, 2021. "Food habit and climate change impacts on agricultural water security during the peak population period in China," Agricultural Water Management, Elsevier, vol. 258(C).
    18. Teodoro Semeraro & Aurelia Scarano & Angelo Leggieri & Antonio Calisi & Monica De Caroli, 2023. "Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    19. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422002815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.