IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422001858.html
   My bibliography  Save this article

Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management

Author

Listed:
  • Sajith, Gouri
  • Srinivas, Rallapalli
  • Golberg, Alexander
  • Magner, Joe

Abstract

Neoteric phenomena such as climate change, scarce water availability and excessive fertilizer usage necessitate an augmentation of resource utilisation efficiencies in the agricultural sector. There is a need to reorient the agroecosystems to curb stress on environmental resources while meeting rising socio-economic objectives under changing hydro-climatic conditions. Considering this, optimal land allocation for diversified agriculture is essential. We propose a combinatorial optimisation approach for land allocation considering agronomic, socio-economic, environmental and hydro-climatic objectives using bio-inspired optimization algorithms. The stochastic approach tackles the problem of optimal agricultural land allocation for crops in a multidimensional context by simultaneously addressing the conflicting goals of farm-level risk management as well as district-level contingency planning. The efficiencies and sensitivity of the proposed framework are assessed through a case study of the Dharwad district in Karnataka, India using the data (water and fertilizer consumption and cost, crop type, cultivable land, man and machine hours, etc.) from the year 2019–2020. Results indicate that Multi-objective Genetic Algorithm (MOGA) is more capable of optimising agricultural resources management by suggesting optimal land allocation for diversified crop planning. Although Cuckoo Search (CS) and Particle Search Optimisation (PSO) also produced productive Pareto fronts, they were observed to be less effective than MOGA. The annual increase in profits and crop yield obtained using MOGA are 103% and 97% respectively, while water usage is reduced by 5% compared to the conventional routines in Dharwad. The proposed hydro-agronomic decision support framework (DSF) can be utilised to assist the AI-enabled crop planning process for the sustainable management of agroecosystems.

Suggested Citation

  • Sajith, Gouri & Srinivas, Rallapalli & Golberg, Alexander & Magner, Joe, 2022. "Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001858
    DOI: 10.1016/j.agwat.2022.107638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Danish Toor & Muhammad Adnan & Ali Raza & Rehan Ahmed & Anosha Arshad & Hassan Maqsood & Fakhar Abbas & Muhammad Mughees-ud-din & Muhammad Hanzla Shehzad & Muhammad Khubaib Zafar, 2020. "Land Degradation and its Management: A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(2), pages 63-66, July.
    2. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    3. David Laborde & Abdullah Mamun & Will Martin & Valeria Piñeiro & Rob Vos, 2021. "Agricultural subsidies and global greenhouse gas emissions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    5. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    6. Gopi Annepu & K. Venkata Subbaiah & N. R. Kandukuri, 2012. "Genetic Algorithm Approach to a Multiobjective Land Allocation Model: A Case Study," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 3(2), pages 86-99, July.
    7. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    8. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    9. Liu, Xiaoping & Ou, Jinpei & Li, Xia & Ai, Bin, 2013. "Combining system dynamics and hybrid particle swarm optimization for land use allocation," Ecological Modelling, Elsevier, vol. 257(C), pages 11-24.
    10. Dang, Anh Nguyet & Kawasaki, Akiyuki, 2017. "Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions," Ecological Modelling, Elsevier, vol. 344(C), pages 29-37.
    11. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Wang, Szu-Hua & Huang, Shu-Li & Budd, William W., 2012. "Integrated ecosystem model for simulating land use allocation," Ecological Modelling, Elsevier, vol. 227(C), pages 46-55.
    13. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Ashenafi Mehari & Paolo Vincenzo Genovese, 2023. "A Land Use Planning Literature Review: Literature Path, Planning Contexts, Optimization Methods, and Bibliometric Methods," Land, MDPI, vol. 12(11), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Lu & Min Zhou & Guoliang Ou & Zuo Zhang & Li He & Yuxiang Ma & Chaonan Ma & Jiating Tu & Siqi Li, 2021. "Sustainable Land-Use Allocation Model at a Watershed Level under Uncertainty," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    2. Zuo Zhang & Min Zhou & Guoliang Ou & Shukui Tan & Yan Song & Lu Zhang & Xin Nie, 2019. "Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis," IJERPH, MDPI, vol. 16(21), pages 1-23, October.
    3. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    4. Shukui Tan & Lu Zhang & Min Zhou & Yanan Li & Siliang Wang & Bing Kuang & Xiang Luo, 2017. "A hybrid mathematical model for urban land-use planning in association with environmental–ecological consideration under uncertainty," Environment and Planning B, , vol. 44(1), pages 54-79, January.
    5. Honglei Jiang & Xia Xu & Lingfei Wang & Tong Zhang, 2021. "Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    6. Amir Hatamkhani & Mojtaba Shourian & Ali Moridi, 2021. "Optimal Design and Operation of a Hydropower Reservoir Plant Using a WEAP-Based Simulation–Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1637-1652, March.
    7. Guadalupe Azuara García & Efrén Palacios Rosas & Alfonso García-Ferrer & Pilar Montesinos Barrios, 2017. "Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    8. Parvez, Md Rezwanul & Ripplinger, David & Maduraperuma, Buddhika, 2015. "Modeling Land Use Pattern Change Analysis in the Northern Great Plains: A Novel Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205868, Agricultural and Applied Economics Association.
    9. Wojciech Sroka & Jaroslaw Mikolajczyk & Tomasz Wojewodzic & Boguslawa Kwoczynska, 2018. "Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    10. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    11. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    12. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    13. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    14. Tao Hong & Ningli Liang & Haomeng Li, 2023. "Study on the Spatial and Temporal Evolution Characteristics and Driving Factors of the “Production–Living–Ecological Space” in Changfeng County," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    15. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    16. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    17. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    18. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    19. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    20. Ul-Allah, Sami & Rehman, Abdul & Hussain, Mubshar & Farooq, Muhammad, 2021. "Fiber yield and quality in cotton under drought: Effects and management," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.