IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v268y2022ics0378377422002360.html
   My bibliography  Save this article

Making waves – Are water scarcity footprints of irrigated agricultural commodities suitable to inform consumer decisions?

Author

Listed:
  • Simmons, Aaron T.
  • Perovic, David J.
  • Roth, Guy

Abstract

Fresh water is a limited global resource. Water scarcity footprints (WSF) have been developed to guide the choices of consumers and supply chains to reduce unsustainable fresh water consumption. The Available WAter REmaining (AWARE) method, which is the only method to have gained global consensus, assigns WSF for a commodity or product relative to the scarcity of water in the catchment in which production occurs. This results in products from water-stressed catchments that have a higher WSF than a similar product, using a comparable amount of water, in water-abundant catchments. The characterisation of water stress is developed using the WaterGap global hydrological model. Here, we use the Murray Darling Basin (MDB) to highlight how WaterGap does not reflect the impacts that legislation and infrastructure have on the relative volumes of water available for agriculture and the relationship between when (and where) water enters a catchment and when it is used for agriculture. Given that these issues are not unique to the MDB, it is likely that the AWARE WSF misrepresents the water stress experienced in other regulated catchments around the world. We conclude that for a WSF to be a useful indicator to guide consumer and supply chain decisions in supporting sustainable water consumption, it needs to reflect responsible management, such as setting aside water for the environment, placing caps on extractions, and the ability to hold water or transport water well beyond when and where it enters a catchment. Ultimately, WSF should also include a mechanism to assess burden shifting, especially if consumer or supply chain decisions were to mean that production moved to another catchment.

Suggested Citation

  • Simmons, Aaron T. & Perovic, David J. & Roth, Guy, 2022. "Making waves – Are water scarcity footprints of irrigated agricultural commodities suitable to inform consumer decisions?," Agricultural Water Management, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:agiwat:v:268:y:2022:i:c:s0378377422002360
    DOI: 10.1016/j.agwat.2022.107689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Adamson & Thilak Mallawaarachchi & John Quiggin, 2009. "Declining inflows and more frequent droughts in the Murray-Darling Basin: climate change, impacts and adaptation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 345-366, July.
    2. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Merete Tallaksen & Sharad K. Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    3. Laurence G. Smith & Guy J. D. Kirk & Philip J. Jones & Adrian G. Williams, 2019. "The greenhouse gas impacts of converting food production in England and Wales to organic methods," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Tallaksen & Sharad Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    2. Chandra Lal Pandey, 2021. "Managing urban water security: challenges and prospects in Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 241-257, January.
    3. Shashidhar Kumar Jha & Ajeet Kumar Negi & Juha Mikael Alatalo & Vignesh Prabhu & Mani Bhushan Jha & Hemant Kumar, 2022. "Forest Degradation Index: A Tool for Forest Vulnerability Assessment in Indian Western Himalaya," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    4. Wei Li & Jianzhong Zhou & Huaiwei Sun & Kuaile Feng & Hairong Zhang & Muhammad Tayyab, 2017. "Impact of Distribution Type in Bayes Probability Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 961-977, February.
    5. Wei Li & Jianzhong Zhou & Lu Chen & Kuaile Feng & Hairong Zhang & Changqing Meng & Na Sun, 2019. "Upper and Lower Bound Interval Forecasting Methodology Based on Ideal Boundary and Multiple Linear Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1203-1215, February.
    6. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    7. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    8. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    9. Mushtaq, Shahbaz & Cockfield, Geoff & White, Neil & Jakeman, Guy, 2014. "Modelling interactions between farm-level structural adjustment and a regional economy: A case of the Australian rice industry," Agricultural Systems, Elsevier, vol. 123(C), pages 34-42.
    10. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    11. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    12. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    13. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    14. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    15. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    17. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    18. Florian Ahrens & Johann Land & Susan Krumdieck, 2022. "Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    19. Ndlovu Wiseman & Sabine Moebs & Marizvikuru Mwale & Jethro Zuwarimwe, 2022. "The Role Of Support Organisations In Promoting Organic Farming Innovations And Sustainability," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 6(1), pages 44-50, July.
    20. Adamson, David, 2013. "Buying Paper and Giving Gold: The Murray Darling Basin Plan," Risk and Sustainable Management Group Working Papers 156481, University of Queensland, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:268:y:2022:i:c:s0378377422002360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.