IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003334.html
   My bibliography  Save this article

Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system

Author

Listed:
  • González Perea, R.
  • Camacho Poyato, E.
  • Rodríguez Díaz, J.A.

Abstract

Nowadays, water scarcity and the increase in energy demand and their associated costs in pressurized irrigation systems are causing serious challenges. In addition, most of these pressurized irrigation systems has been designed to be operated on-demand where irrigation water is continuously available to farmers complexing the daily decision-making process of the water user association’ managers. Know in advance how much water will be applied by each farmer and its distribution during the day would facilitate the management of the system and would help to optimize the water use and energy costs. In this work, a new hybrid methodology (CANGENFIS) combining Multiple input -Multiple output, fuzzy logic, artificial neural networks and multiobjective genetic algorithms was developed to model farmer behaviour and short-term forecasting the distribution by tariff period of the irrigation depth applied at farm level. CANGENFIS which was developed in Matlab was applied to a real water user association located in Southwest Spain. Three optimal models for the main crops in the water user association were obtained. The average for all tariff periods of the representability (R2) and accuracy of the forecasts (standard error prediction, SEP) were 0.70, 0.76% and 0.85% and 19.9%, 22.9% and 19.5%, for rice, maize and tomato crops models, respectively.

Suggested Citation

  • González Perea, R. & Camacho Poyato, E. & Rodríguez Díaz, J.A., 2021. "Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003334
    DOI: 10.1016/j.agwat.2021.107068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Perea & E. Poyato & P. Montesinos & J. Díaz, 2015. "Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5551-5567, December.
    2. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    3. Farshad Rezaei & Hamid R. Safavi & Maryam Zekri, 2017. "A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1139-1155, March.
    4. González Perea, R. & Camacho Poyato, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Prediction of applied irrigation depths at farm level using artificial intelligence techniques," Agricultural Water Management, Elsevier, vol. 206(C), pages 229-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    2. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    3. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    4. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    5. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    6. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    7. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    8. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    9. Omolola M. Adeola & Abel Ramoelo & Brian Mantlana & Oscar Mokotedi & Wongalethu Silwana & Philemon Tsele, 2022. "Review of Publications on the Water-Energy-Food Nexus and Climate Change Adaptation Using Bibliometric Analysis: A Case Study of Africa," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    10. Russeil, Valentin & Lo Seen, Danny & Broust, François & Bonin, Muriel & Praene, Jean-Philippe, 2023. "Food and electricity self-sufficiency trade-offs in Reunion Island: Modelling land-use change scenarios with stakeholders," Land Use Policy, Elsevier, vol. 132(C).
    11. Lee, Seung Oh & Jung, Younghun, 2018. "Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 207(C), pages 80-90.
    12. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    13. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    14. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    16. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    17. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    18. Najam uz Zehra Gardezi & Brent S. Steel & Angela Lavado, 2020. "The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    19. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    20. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.