IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v222y2025ics0308521x24003019.html
   My bibliography  Save this article

Lowering the greenhouse gas and ammonia emissions from grassland-based dairy production

Author

Listed:
  • Cashman, Owen
  • Casey, Imelda
  • Sorley, Marion
  • Forrestal, Patrick
  • Styles, David
  • Wall, David
  • Burchill, William
  • Humphreys, James

Abstract

Lowering greenhouse gas (GHG) and ammonia emissions from ruminant production systems is critical to mitigating climate change and enrichment and acidification of vulnerable habitats. Quantifying emission reductions from the implementation of best practices (BP) on grassland-based dairy systems is essential to guide farmers and policy towards wider adoption of best practices.

Suggested Citation

  • Cashman, Owen & Casey, Imelda & Sorley, Marion & Forrestal, Patrick & Styles, David & Wall, David & Burchill, William & Humphreys, James, 2025. "Lowering the greenhouse gas and ammonia emissions from grassland-based dairy production," Agricultural Systems, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:agisys:v:222:y:2025:i:c:s0308521x24003019
    DOI: 10.1016/j.agsy.2024.104151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X24003019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.104151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    2. Cashman, Owen & Casey, Imelda & Humphreys, James, 2024. "The economic performance of grassland-based milk production using best practices to lower greenhouse gas and ammonia emissions," Agricultural Systems, Elsevier, vol. 221(C).
    3. Tuohy, P. & Humphreys, J. & Holden, N.M. & Fenton, O., 2016. "Runoff and subsurface drain response from mole and gravel mole drainage across episodic rainfall events," Agricultural Water Management, Elsevier, vol. 169(C), pages 129-139.
    4. Niharika Rahman & Patrick J. Forrestal, 2021. "Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland," Agriculture, MDPI, vol. 11(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyian, Natalia & Kolosha, Valerii, 2020. "Формування Ціни На Молоко В Україні В Контексті Світових Тенденцій," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(4), December.
    2. Ramilan, Thiagarajah & Scrimgeour, Frank & Marsh, Dan, 2011. "Analysis of environmental and economic efficiency using a farm population micro-simulation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1344-1352.
    3. Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
    4. Graeme J. Doole & Dan Marsh & Thiagaragah Ramilan, 2011. "Evaluation of Agri-Environmental Policies for Water Quality Improvement Accounting for Firm Heterogeneity," Working Papers in Economics 11/13, University of Waikato.
    5. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    6. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    7. Piwonska, Kalina, 2021. "The Concept of Eco-Efficiency in Fisheries: A Literature Review," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2021(4).
    8. Guthrie, Graeme, 2024. "Farm debt and the over-exploitation of natural capital," Resource and Energy Economics, Elsevier, vol. 77(C).
    9. Anna Kuczuk & Janusz Pospolita, 2020. "Sustainable Agriculture – Energy and Emergy Aspects of Agricultural Production," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1000-1018.
    10. Cashman, Owen & Casey, Imelda & Humphreys, James, 2024. "The economic performance of grassland-based milk production using best practices to lower greenhouse gas and ammonia emissions," Agricultural Systems, Elsevier, vol. 221(C).
    11. Andreia Saavedra Cardoso & Tiago Domingos & Manuela Raposo De Magalhães & José De Melo-Abreu & Jorge Palma, 2017. "Mapping the Lisbon Potential Foodshed in Ribatejo e Oeste: A Suitability and Yield Model for Assessing the Potential for Localized Food Production," Sustainability, MDPI, vol. 9(11), pages 1-31, November.
    12. Jiliang Zheng & Xiaoting Peng, 2019. "Does an Ecological Industry Chain Improve the Eco-Efficiency of an Industrial Cluster? Based on Empirical Study of an Energy-Intensive Industrial Cluster in China," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    13. White, Robin R., 2016. "Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production," Agricultural Systems, Elsevier, vol. 146(C), pages 20-29.
    14. Salo, Heidi & Mellin, Ilkka & Sikkilä, Markus & Nurminen, Jyrki & Äijö, Helena & Paasonen-Kivekäs, Maija & Virtanen, Seija & Koivusalo, Harri, 2019. "Performance of subsurface drainage implemented with trencher and trenchless machineries," Agricultural Water Management, Elsevier, vol. 213(C), pages 957-967.
    15. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    16. Deirdre Hennessy & Luc Delaby & Agnes van den Pol-van Dasselaar & Laurence Shalloo, 2020. "Increasing Grazing in Dairy Cow Milk Production Systems in Europe," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    17. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    18. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Reiner Doluschitz, 2018. "Factors Affecting Global versus Local Environmental and Economic Performance of Dairying: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    19. Huang, Wei, 2022. "Demand for plant-based milk and effects of a carbon tax on fresh milk consumption in Sweden," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 518-529.
    20. Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:222:y:2025:i:c:s0308521x24003019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.