IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v204y2023ics0308521x22001974.html
   My bibliography  Save this article

Integrating long fallow into wheat-based cropping systems in Western Australia: Spatial pattern of yield and economic responses

Author

Listed:
  • Chen, Chao
  • Fletcher, Andrew
  • Ota, Noboru
  • Oliver, Yvette
  • Lawes, Roger

Abstract

Long fallow, once a common management practice in the low-rainfall of Mediterranean-type environments, may provide growers with an opportunity to switch cropping sequence and reduce the risk of yield and income losses during the recent drought period. However, such benefits are usually not uniform across a spatially variable environment. It is important to identify where long fallow would have a role in increasing crop yield and economic return.

Suggested Citation

  • Chen, Chao & Fletcher, Andrew & Ota, Noboru & Oliver, Yvette & Lawes, Roger, 2023. "Integrating long fallow into wheat-based cropping systems in Western Australia: Spatial pattern of yield and economic responses," Agricultural Systems, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:agisys:v:204:y:2023:i:c:s0308521x22001974
    DOI: 10.1016/j.agsy.2022.103561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22001974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cann, David J. & Hunt, James R. & Malcolm, Bill, 2020. "Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia," Agricultural Systems, Elsevier, vol. 178(C).
    2. Bell, Lindsay W. & Byrne (nee Flugge), Felicity & Ewing, Mike A. & Wade, Len J., 2008. "A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system," Agricultural Systems, Elsevier, vol. 96(1-3), pages 166-174, March.
    3. Wuest, Stewart B. & Schillinger, William F., 2022. "Tillage timing to improve soil water storage in Mediterranean long fallow," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.
    5. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.
    6. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    7. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    8. Austin, R. B. & Playan, E. & Gimeno, J., 1998. "Water storage in soils during the fallow: prediction of the effects of rainfall pattern and soil conditions in the Ebro valley of Spain," Agricultural Water Management, Elsevier, vol. 36(3), pages 213-231, April.
    9. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    10. Sekine, Hisako, 2021. "Wheat Grower Payments for Varietal Use:Comparison between Japan, Germany, and Australia," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 23.
    11. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    12. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Jianjun Huai, 2016. "Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    4. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    5. Anna Florence & Andrew Revill & Stephen Hoad & Robert Rees & Mathew Williams, 2021. "The Effect of Antecedence on Empirical Model Forecasts of Crop Yield from Observations of Canopy Properties," Agriculture, MDPI, vol. 11(3), pages 1-16, March.
    6. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    7. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    8. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    9. Uttam Khanal & Clevo Wilson & Boon L. Lee & Viet-Ngu Hoang, 2018. "Climate change adaptation strategies and food productivity in Nepal: a counterfactual analysis," Climatic Change, Springer, vol. 148(4), pages 575-590, June.
    10. Emilie Stokeld & Simon A. Croft & Jonathan M. H. Green & Christopher D. West, 2020. "Climate change, crops and commodity traders: subnational trade analysis highlights differentiated risk exposure," Climatic Change, Springer, vol. 162(2), pages 175-192, September.
    11. Flohr, B.M. & Ouzman, J. & McBeath, T.M. & Rebetzke, G.J. & Kirkegaard, J.A. & Llewellyn, R.S., 2021. "Redefining the link between rainfall and crop establishment in dryland cropping systems," Agricultural Systems, Elsevier, vol. 190(C).
    12. Brett A Bryan & Jianjun Huai & Jeff Connor & Lei Gao & Darran King & John Kandulu & Gang Zhao, 2015. "What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    13. Nasir Mahmood & Muhammad Arshad & Harald Kaechele & Muhammad Faisal Shahzad & Ayat Ullah & Klaus Mueller, 2020. "Fatalism, Climate Resiliency Training and Farmers’ Adaptation Responses: Implications for Sustainable Rainfed-Wheat Production in Pakistan," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    14. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    15. Zeleke, K.T. & Nendel, C., 2016. "Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing," Agricultural Water Management, Elsevier, vol. 166(C), pages 139-148.
    16. Peng Su & Shiqi Li & Jing’ai Wang & Fenggui Liu, 2021. "Vulnerability Assessment of Maize Yield Affected by Precipitation Fluctuations: A Northeastern United States Case Study," Land, MDPI, vol. 10(11), pages 1-15, November.
    17. Siatwiinda M. Siatwiinda & Iwan Supit & Bert van Hove & Olusegun Yerokun & Gerard H. Ros & Wim de Vries, 2021. "Climate change impacts on rainfed maize yields in Zambia under conventional and optimized crop management," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
    18. Flach, Rafaela & Abrahão, Gabriel & Bryant, Benjamin & Scarabello, Marluce & Soterroni, Aline C. & Ramos, Fernando M. & Valin, Hugo & Obersteiner, Michael & Cohn, Avery S., 2021. "Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming," World Development, Elsevier, vol. 146(C).
    19. Santeramo, Fabio Gaetano & Maccarone, Irene, 2022. "Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali [Historical crop yields and climate variability: analysis of Italian cereal data]," MPRA Paper 114135, University Library of Munich, Germany, revised 04 Aug 2022.
    20. Na Huang & Jialin Wang & Yu Song & Yuying Pan & Guolin Han & Ziyuan Zhang & Shangqian Ma & Guofeng Sun & Cong Liu & Zhihua Pan, 2022. "The adaptation mechanism based on an integrated vulnerability assessment of potato production to climate change in Inner Mongolia, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:204:y:2023:i:c:s0308521x22001974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.