IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v164y2018icp38-46.html
   My bibliography  Save this article

The economic value of replacement breeding ewes attaining puberty within their first year of life on New Zealand sheep farms

Author

Listed:
  • Wall, A.J.
  • Juengel, J.L.
  • Edwards, S.J.
  • Rendel, J.M.

Abstract

The economic value of increasing the reproductive performance of a breeding-ewe flock through selecting replacement ewes that attain puberty (AP) in their first year of life was quantified using bio-economic farm system modelling. In all of the scenarios modelled, the breeding-ewes were first presented for mating as yearlings (18–19 months of age) to enable them to start lambing at 2 years of age. For a New Zealand hill country sheep farm initially weaning 1.4 lambs per ewe mated, farm profit was improved by 6% when the percentage of breeding ewes that attained puberty in their first year of life was increased from 25% to 100%. However, if current sheep-industry target liveweight recommendations for rearing ewe lambs are met then between 70 and 95% of breeding-ewes should already attain puberty in their first year of life, and under these circumstances any further gains in farm profitability through specifically using this selection policy will be small (<2%). Countering the reproductive performance benefits of this selection policy was: (1) ewe liveweight increased with a higher AP%, which increased the individual feed requirements of the ewes; and (2) ewe mortality increased as multiple-bearing ewes became increasingly prevalent. The economic cost of using additional resources to further increase the farm's feed supply outweighed the benefits, resulting in the need to reduce farm breeding ewe numbers. The methodology and farm system model used for this study can be readily applied to other sheep farming systems. This can identify components of the reproductive process which should be targeted for further research to maximise on-farm benefits, and provide information on how a farm system will need to change for this to be successfully achieved.

Suggested Citation

  • Wall, A.J. & Juengel, J.L. & Edwards, S.J. & Rendel, J.M., 2018. "The economic value of replacement breeding ewes attaining puberty within their first year of life on New Zealand sheep farms," Agricultural Systems, Elsevier, vol. 164(C), pages 38-46.
  • Handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:38-46
    DOI: 10.1016/j.agsy.2018.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17303153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thompson, B.R. & Stevens, D.R. & Bywater, A.C. & Rendel, J.M. & Cox, N.R., 2015. "Impacts of animal genetic gain on the profitability of three different grassland farming systems producing red meat," Agricultural Systems, Elsevier, vol. 141(C), pages 36-47.
    2. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lydia J. Farrell & Paul R. Kenyon & Stephen T. Morris & Peter R. Tozer, 2020. "The Impact of Hogget and Mature Flock Reproductive Success on Sheep Farm Productivity," Agriculture, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Cheng, 2022. "The Impact of Enterprise Digital Transformation on Service Innovation Performance -- Taking the construction enterprises in the Yangtze River Delta as the research object," International Journal of Science and Business, IJSAB International, vol. 14(1), pages 155-172.
    2. Hutchings, Timothy R., 2009. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia – Part 1," AFBM Journal, Australasian Farm Business Management Network, vol. 6(01), pages 1-16, October.
    3. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    4. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    5. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    6. Yeh, D. Adeline & Gomez, Miguel I. & Lin Lawell, C.-Y. Cynthia, 2020. "Sustainable Pest Management Under Uncertainty: A Dynamic Bioeconomic Analysis of Lowbush Blueberry Production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304326, Agricultural and Applied Economics Association.
    7. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    8. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    9. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    10. Vanwindekens, Frédéric M. & Stilmant, Didier & Baret, Philippe V., 2013. "Development of a broadened cognitive mapping approach for analysing systems of practices in social–ecological systems," Ecological Modelling, Elsevier, vol. 250(C), pages 352-362.
    11. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    12. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    13. Marie KUBANKOVA & Miroslav HAJEK & Alena VOTAVOVA, 2016. "Environmental and social value of agriculture innovation," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(3), pages 101-112.
    14. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    15. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    16. Vayssières, Jonathan & Bocquier, François & Lecomte, Philippe, 2009. "GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises. Part II - Interactive simulation of various management strategies with diverse stakeholders," Agricultural Systems, Elsevier, vol. 101(3), pages 139-151, July.
    17. Alain Carpentier & Ibirénoyé Honoré Romaric Sodjahin & Rémy Ballot, 2022. "On the economics of crop rotation diversification. Valuing pre crop and cropping system effects and accounting for opportunity costs," Post-Print hal-04793152, HAL.
    18. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    19. Kragt, M.E. & Pannell, D.J. & McVittie, A. & Stott, A.W. & Vosough Ahmadi, B. & Wilson, P., 2016. "Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems," Agricultural Systems, Elsevier, vol. 143(C), pages 217-224.
    20. Nedumaran, S., 2013. "Tradeoff between Non-farm Income and on-farm conservation investments in the Semi-Arid Tropics of India," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152171, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:38-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.