IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v153y2017icp172-180.html
   My bibliography  Save this article

A framework coupling farm typology and biophysical modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. Application in the Caribbean

Author

Listed:
  • Sierra, Jorge
  • Causeret, François
  • Chopin, Pierre

Abstract

Agricultural land devoted to vegetable crops in the Caribbean has strongly increased during the past twenty years, which raises major concerns regarding a reduction in soil organic carbon (SOC) stocks because of low C inputs and high SOC outputs from these cropping systems. The aim of this study was to assess the impact of farming practices on SOC stocks at the farm type level. We designed a framework which encompasses a farm typology describing the diversity of farm practices applied to vegetable crops and a model of SOC dynamics to estimate the impact of these practices on SOC stocks. The study was carried out in the Guadeloupe archipelago, which offers a good representation of the variability of Caribbean agriculture, in a context of transition from traditional sugarcane and banana monocultures for export to a more diversified agriculture including vegetable crops. A farm typology was developed from a survey of 71 farmers concerning their socio-economic characteristics and farming practices. The MorGwanik model of SOC dynamics was then used to assess the impact of farming practices on SOC at the farm type level, and to interpret the observed SOC changes. Five farm types were identified varying from traditional export agriculture with low diversification to monoculture of vegetable crops based on compost application and reduced soil tillage. The observed and simulated results indicated that systems with a fallow/vegetables cycle ratio>2 and the monoculture of vegetables including compost applications at ≥10Mgha−1yr−1 presented C sequestration corresponding to SOC increases of 10% and 3% of the initial stock, respectively. The monoculture of vegetables with a compost rate<10Mgha−1yr−1 and systems including vegetables in rotation with export crops and a short fallow cycle presented a reduction in SOC that ranged from 10% to 18%. Pedoclimatic conditions had a lower impact on SOC changes. Similar socio-economic profiles of farmers were observed for farm types including very different cropping systems. The model well described SOC changes for each farm type and offered valuable insights about the factors affecting SOC losses and C sequestration. The framework proposed in this study was helpful to identify improved managements that can maintain or increase SOC stocks under tropical conditions.

Suggested Citation

  • Sierra, Jorge & Causeret, François & Chopin, Pierre, 2017. "A framework coupling farm typology and biophysical modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. Application in the Caribbean," Agricultural Systems, Elsevier, vol. 153(C), pages 172-180.
  • Handle: RePEc:eee:agisys:v:153:y:2017:i:c:p:172-180
    DOI: 10.1016/j.agsy.2017.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16308721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blazy, Jean-Marc & Barlagne, Carla & Sierra, Jorge, 2015. "Environmental and economic impacts of agri-environmental schemes designed in French West Indies to enhance soil C sequestration and reduce pollution risks. A modelling approach," Agricultural Systems, Elsevier, vol. 140(C), pages 11-18.
    2. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    3. Blazy, Jean-Marc & Ozier-Lafontaine, Harry & Doré, Thierry & Thomas, Alban & Wery, Jacques, 2009. "A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 30-41, June.
    4. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    5. Meylan, Louise & Merot, Anne & Gary, Christian & Rapidel, Bruno, 2013. "Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: The case of erosion control in coffee-based agroforestry systems in," Agricultural Systems, Elsevier, vol. 118(C), pages 52-64.
    6. VAN DEN BROECK, Goedele & MAERTENS, Miet, 2016. "Horticultural exports and food security in developing countries," Working Papers 232595, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    7. Gaiser, Thomas & Judex, Michael & Hiepe, Claudia & Kuhn, Arnim, 2010. "Regional simulation of maize production in tropical savanna fallow systems as affected by fallow availability," Agricultural Systems, Elsevier, vol. 103(9), pages 656-665, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Till Kuhn, David Schäfer, 2018. "A farm typology for North Rhine-Westphalia to assess agri-environmental policies," Discussion Papers 279702, University of Bonn, Institute for Food and Resource Economics.
    2. Jean-Marc Blazy & Julie Subervie & Jacky Paul & François Causeret & Loic Guinde & Sarah Moulla & Alban Thomas & Jorge Sierra, 2020. "Ex ante assessment of the cost-effectiveness of Agri-Environmental Schemes promoting compost use to sequester carbon in soils in Guadeloupe," Working Papers hal-02748634, HAL.
    3. Blazy, J.-M. & Subervie, J. & Paul, J. & Causeret, F. & Guindé, L. & Moulla, S. & Thomas, A. & Sierra, J., 2021. "Ex-ante assessment of the cost-effectiveness of public policies to sequester carbon in soils," Ecological Economics, Elsevier, vol. 190(C).
    4. Aravindakshan, Sreejith & Krupnik, Timothy J. & Groot, Jeroen C.J. & Speelman, Erika N. & Amjath- Babu, T.S. & Tittonell, Pablo, 2020. "Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh," Agricultural Systems, Elsevier, vol. 177(C).
    5. Wang, Ying & Bilsborrow, Richard E. & Zhang, Qi & Li, Jiangfeng & Song, Conghe, 2019. "Effects of payment for ecosystem services and agricultural subsidy programs on rural household land use decisions in China: Synergy or trade-off?," Land Use Policy, Elsevier, vol. 81(C), pages 785-801.
    6. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    2. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    3. Selbonne, S. & Guindé, L. & Belmadani, A. & Bonine, C. & L. Causeret, F. & Duval, M. & Sierra, J. & Blazy, J.M., 2022. "Designing scenarios for upscaling climate-smart agriculture on a small tropical island," Agricultural Systems, Elsevier, vol. 199(C).
    4. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
    5. Carof, M. & Colomb, B. & Aveline, A., 2013. "A guide for choosing the most appropriate method for multi-criteria assessment of agricultural systems according to decision-makers’ expectations," Agricultural Systems, Elsevier, vol. 115(C), pages 51-62.
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    10. Van den Broeck, Goedele & Swinnen, Johan & Maertens, Miet, 2017. "Global value chains, large-scale farming, and poverty: Long-term effects in Senegal," Food Policy, Elsevier, vol. 66(C), pages 97-107.
    11. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    12. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    13. Laura Enthoven & Goedele Van den Broeck, 2021. "Promoting Food Safety in Local Value Chains: The Case of Vegetables in Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    15. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    16. Van Den Broeck, G & Van Hoyweghen, K & Maertens, M, 2017. "Horticultural exports and food security in Senegal," Working Papers 258322, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    17. Fabry, Anna & Van den Broeck, Goedele & Maertens, Miet, 2022. "Decent work in global food value chains: Evidence from Senegal," World Development, Elsevier, vol. 152(C).
    18. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    19. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    20. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:153:y:2017:i:c:p:172-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.