IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-04-2.html
   My bibliography  Save this article

Decomposition Analysis of Energy Consumption in Thailand, 1990-2020

Author

Listed:
  • Atit Tippichai

    (Department of Architecture and Planning, School of Architecture, Art and Design, King Mongkut s Institute of Technology Ladkrabang, Bangkok, Thailand.)

Abstract

Thailand is a net energy importer that has steadily increased the demand for energy over the past several decades. But there has not been a systematic analysis of the energy demand change factors. Therefore, a decomposition analysis was applied to determine the major factor causing the change in energy use during the years 1990-2020. The analysis covered a regional financial crisis known in Thailand as the Tom Yum Kung crisis in 1997-1998 and a global pandemic COVID-19 in 2020 onwards. The analysis results showed that the value-added of economic sectors is the most important factor with requiring more energy, while energy intensity is the second most important factor in reducing energy consumption. Therefore, increasing the value-added of productions and enhancing the energy efficiency more stringent will lead to a decoupling of energy consumption against GDP and a sooner peak demand of energy in Thailand.

Suggested Citation

  • Atit Tippichai, 2022. "Decomposition Analysis of Energy Consumption in Thailand, 1990-2020," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 10-14, July.
  • Handle: RePEc:eco:journ2:2022-04-2
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/13047/6804
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/13047
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    2. Kornelis Blok, 2004. "Improving Energy Efficiency by Five Percent and More per Year?," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 87-99, October.
    3. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    4. Li, Kong & Xianzhong, Mu & Guangwen, Hu, 2021. "A decomposing analysis of productive and residential energy consumption in Beijing," Energy, Elsevier, vol. 226(C).
    5. Peggy Hariwan & Bambang Juanda & Sri Mulatsih & Himawan Hariyoga, 2021. "Analysis of Energy Efficiency on the Manufacturing Industry in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 28-36.
    6. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    7. Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
    8. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
    9. H. Wang & B.W. Ang & P. Zhou, 2018. "Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    4. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    5. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    6. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    7. Changzheng Zhu & Wenbo Du, 2019. "A Research on Driving Factors of Carbon Emissions of Road Transportation Industry in Six Asia-Pacific Countries Based on the LMDI Decomposition Method," Energies, MDPI, vol. 12(21), pages 1-19, October.
    8. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    9. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    10. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
    11. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    12. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    13. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    14. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    15. Liu, F. L. & Ang, B. W., 2003. "Eight methods for decomposing the aggregate energy-intensity of industry," Applied Energy, Elsevier, vol. 76(1-3), pages 15-23, September.
    16. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    17. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    18. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    19. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    20. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.

    More about this item

    Keywords

    decomposition analysis; energy consumption; economic structure; value-added; energy intensity; Thailand;
    All these keywords.

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • P51 - Political Economy and Comparative Economic Systems - - Comparative Economic Systems - - - Comparative Analysis of Economic Systems
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-04-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.