IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2019-03-28.html
   My bibliography  Save this article

Forecasting of India VIX as a Measure of Sentiment

Author

Listed:
  • Arindam Banerjee

    (Birla Institute of Management Technology, Greater Noida, India.)

Abstract

The India VIX represents the sentiment of traders in the Indian market, so by forecasting the future value of India VIX, we get a feel for investor sentiment in future. The objective of this study is to fit a forecasting model on India VIX using auto regressive integrated moving average (ARIMA). The model would be useful in having a glimpse of investor mood in near future. This is probably the first of its kind study based on Indian market. The motivation of this study lies not only on the pervasive agreement that the VIX is a barograph of the general marketplace sentiment as to what concerns investors' risk appetite, but also on the fact that there are many trading strategies that depend on the VIX index for speculative and hedging determinations. The study found ARIMA (1-0-2) forecasting model on VIX produces better forecasting result. We also validated the model with an out-of-sample dataset and found the model reliable.

Suggested Citation

  • Arindam Banerjee, 2019. "Forecasting of India VIX as a Measure of Sentiment," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 268-276.
  • Handle: RePEc:eco:journ1:2019-03-28
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/8046/pdf
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/8046/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    2. Robert B. Durand & Dominic Lim & J. Kenton Zumwalt, 2011. "Fear and the Fama‐French Factors," Financial Management, Financial Management Association International, vol. 40(2), pages 409-426, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    2. Peterburgsky, Stanley, 2024. "Size, value and volatility," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 752-763.
    3. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    4. Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
    5. González-Rivera, Gloria & Veiga, Helena, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    7. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    8. Qadan, Mahmoud & Jacob, Maram, 2022. "The value premium and investors' appetite for risk," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 194-219.
    9. Reiter-Gavish, Liron & Qadan, Mahmoud & Yagil, Joseph, 2021. "Financial advice: Who Exactly Follows It?," Research in Economics, Elsevier, vol. 75(3), pages 244-258.
    10. Saffet Akdag & Ömer İskenderoglu & Andrew Adewale Alola, 2020. "The volatility spillover effects among risk appetite indexes: insight from the VIX and the rise," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 49-65, April.
    11. Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
    12. Chune Young Chung & Doojin Ryu & Kainan Wang & Blerina Bela Zykaj, 2018. "Optionable Stocks and Mutual Fund Performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 390-412, March.
    13. Song, Wonho & Ryu, Doojin & Webb, Robert I., 2016. "Overseas market shocks and VKOSPI dynamics: A Markov-switching approach," Finance Research Letters, Elsevier, vol. 16(C), pages 275-282.
    14. Pati, Pratap Chandra & Rajib, Prabina & Barai, Parama, 2019. "The role of the volatility index in asset pricing: The case of the Indian stock market," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 336-346.
    15. Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
    16. Hammoudeh, Shawkat & Liu, Tengdong & Chang, Chia-Lin & McAleer, Michael, 2013. "Risk spillovers in oil-related CDS, stock and credit markets," Energy Economics, Elsevier, vol. 36(C), pages 526-535.
    17. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    18. Andrea Bucci, 2020. "Cholesky–ANN models for predicting multivariate realized volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 865-876, September.
    19. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    20. Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017. "Forecasting With the Standardized Self‐Perturbed Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.

    More about this item

    Keywords

    VIX; India; Sentiment; Forecasting; ARIMA;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2019-03-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.