IDEAS home Printed from
   My bibliography  Save this article

Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model


  • Gholam Hossein Hasantash

    (Faculty Member, Institute for International Energy Studies (IIES))

  • Hamidreza Mostafaei

    (Department of Mathematics, Faculty of Science, Shahid Rajaei Teacher Training University, Tehran)

  • Shaghayegh Kordnoori

    (MSc of Statistics & Statistics Expert of Research Institute for ICT,Tehran, Iran.)


Grey theory is about systematic analysis of limited information. The Grey-Markov model can improve the accuracy of forecast range in the random fluctuating data sequence. In this paper, we employed this model in energy system. The average errors of Energy Information Administrations predictions for world oil price and domestic crude oil production from 1982 to 2007 and from 1985 to 2008 respectively were used as two forecasted examples. We showed that the proposed Grey-Markov model can improve the forecast accuracy of original Grey forecast model.

Suggested Citation

  • Gholam Hossein Hasantash & Hamidreza Mostafaei & Shaghayegh Kordnoori, 2012. "Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model," International Journal of Economics and Financial Issues, Econjournals, vol. 2(3), pages 312-319.
  • Handle: RePEc:eco:journ1:2012-03-9

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    2. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ying-Fang Huang & Chia-Nan Wang & Hoang-Sa Dang & Shun-Te Lai, 2015. "Predicting the Trend of Taiwan’s Electronic Paper Industry by an Effective Combined Grey Model," Sustainability, MDPI, Open Access Journal, vol. 7(8), pages 1-20, August.

    More about this item


    Grey theory; Grey Markov model; EIA; Oil;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2012-03-9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ilhan Ozturk). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.