IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v63y2017i8id7-2017-jfs.html
   My bibliography  Save this article

Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering

Author

Listed:
  • Ali Akbar JAFARZADEH

    (Department of Forest Sciences, Faculty of Agriculture and Natural Resources, University of Ilam, Ilam, Iran)

  • Ali MAHDAVI

    (Department of Forest Sciences, Faculty of Agriculture and Natural Resources, University of Ilam, Ilam, Iran)

  • Heydar JAFARZADEH

    (Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Ilam, Iran)

Abstract

In this study we evaluated forest fire risk in the west of Iran using the Apriori algorithm and fuzzy c-means (FCM) clustering. We used twelve different input parameters to model fire risk in Ilam Province. Our results with minimum support and minimum confidence show strong relationships between wildfire occurrence and eight variables (distance from settlement, population density, distance from road, slope, standing dead oak trees, temperature, land cover and distance from farm land). In this study, we defined three clusters for each variable: low, middle and high. The data regarding the factors affecting forest fire risk were distributed in these three clusters with different degrees of membership and the final map of all factors was classified by FCM clustering. Each layer was then created in a geographic information system. Finally, wildfire risks in the area obtained from overlaying these layers were classified into five categories, from very low to very high according to the degree of danger.

Suggested Citation

  • Ali Akbar JAFARZADEH & Ali MAHDAVI & Heydar JAFARZADEH, 2017. "Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(8), pages 370-380.
  • Handle: RePEc:caa:jnljfs:v:63:y:2017:i:8:id:7-2017-jfs
    DOI: 10.17221/7/2017-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/7/2017-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/7/2017-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/7/2017-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    2. Martin Parry & Jean Palutikof & Clair Hanson & Jason Lowe, 2008. "Squaring up to reality," Nature Climate Change, Nature, vol. 1(806), pages 68-71, June.
    3. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anuj Tiwari & Mohammad Shoab & Abhilasha Dixit, 2021. "GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1189-1230, January.
    2. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    3. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.
    4. Hamed Adab, 2017. "Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1807-1825, July.
    5. Nitidetch Koohathongsumrit & Pongchanun Luangpaiboon, 2022. "An integrated FAHP–ZODP approach for strategic marketing information system project selection," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1792-1809, September.
    6. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    7. Ruchi Mishra & Rajesh Kr Singh & Venkatesh Mani, 2023. "A hybrid multi criteria decision-making framework to facilitate omnichannel adoption in logistics: an empirical case study," Annals of Operations Research, Springer, vol. 326(2), pages 685-719, July.
    8. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    9. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    10. Nehal Elshaboury & Tarek Attia & Mohamed Marzouk, 2020. "Comparison of Several Aggregation Techniques for Deriving Analytic Network Process Weights," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4901-4919, December.
    11. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    12. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    13. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    14. Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
    15. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    16. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    17. Željko Stević & Dragan Pamučar & Marko Subotić & Jurgita Antuchevičiene & Edmundas Kazimieras Zavadskas, 2018. "The Location Selection for Roundabout Construction Using Rough BWM-Rough WASPAS Approach Based on a New Rough Hamy Aggregator," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    18. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    19. Clive L. Spash & Alex Y. Lo, 2012. "Australia's Carbon Tax: A Sheep in Wolf's Clothing?," The Economic and Labour Relations Review, , vol. 23(1), pages 67-85, February.
    20. María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:63:y:2017:i:8:id:7-2017-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.