IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i3p1723-1743.html
   My bibliography  Save this article

Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques

Author

Listed:
  • Hamed Adab
  • Kasturi Kanniah
  • Karim Solaimani

Abstract

Fire in forested areas can be regarded as an environmental disaster which is triggered by either natural forces or anthropogenic activities. Fires are one of the major hazards in forested and grassland areas in the north of Iran. Control of fire is difficult, but it is feasible to map fire risk by geospatial technologies and thereby minimize the frequency of fire occurrences and damages caused by fire. The fire risk models provide a suitable concept to understand characterization of fire risk. Some models are map based, and they combine effectively different forest fire–causing variables with remote sensing data in a GIS environment for identifying and mapping forest fire risk. In this study, Structural Fire Index, Fire Risk Index, and a new index called Hybrid Fire Index were used to delineate fire risk in northeastern Iran that is subjected to frequent forest fire. Vegetation moisture, slope, aspect, elevation, distance from roads, and vicinity to settlements were used as the factors influencing accidental fire starts. These indices were set up by assigning subjective weight values to the classes of the layers based on their sensitivity ratio to fire. Hot spots data derived from MODIS satellite sensor were used to validate the indices. Assessment of the indices with receiver operating characteristic (ROC) curves shows that 76.7 % accuracy of the HFI outperformed the other two indices. According to the Hybrid Fire Index, 57.5 % of the study area is located under high-risk zone, 33 % in medium-risk zone, and the remaining 9.5 % area is located in low-risk zone. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1723-1743
    DOI: 10.1007/s11069-012-0450-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0450-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0450-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Christos Vasilakos & Kostas Kalabokidis & John Hatzopoulos & Ioannis Matsinos, 2009. "Identifying wildland fire ignition factors through sensitivity analysis of a neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 125-143, July.
    2. Krivtsov, V. & Vigy, O. & Legg, C. & Curt, T. & Rigolot, E. & Lecomte, I. & Jappiot, M. & Lampin-Maillet, C. & Fernandes, P. & Pezzatti, G.B., 2009. "Fuel modelling in terrestrial ecosystems: An overview in the context of the development of an object-orientated database for wild fire analysis," Ecological Modelling, Elsevier, vol. 220(21), pages 2915-2926.
    3. Chuvieco, Emilio & Aguado, Inmaculada & Yebra, Marta & Nieto, Héctor & Salas, Javier & Martín, M. Pilar & Vilar, Lara & Martínez, Javier & Martín, Susana & Ibarra, Paloma & de la Riva, Juan & Baeza, J, 2010. "Development of a framework for fire risk assessment using remote sensing and geographic information system technologies," Ecological Modelling, Elsevier, vol. 221(1), pages 46-58.
    4. Brigitte Leblon, 2005. "Monitoring Forest Fire Danger with Remote Sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(3), pages 343-359, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    2. Th. Zagas & D. Raptis & D. Zagas & D. Karamanolis, 2013. "Planning and assessing the effectiveness of traditional silvicultural treatments for mitigating wildfire hazard in pine woodlands of Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 545-561, January.
    3. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    4. Nives Grasso & Andrea Maria Lingua & Maria Angela Musci & Francesca Noardo & Marco Piras, 2018. "An INSPIRE-compliant open-source GIS for fire-fighting management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 623-637, January.
    5. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    6. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
    7. Jaehoon Jung & Changjae Kim & Shanmuganathan Jayakumar & Seongsam Kim & Soohee Han & Dong Kim & Joon Heo, 2013. "Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2129-2146, February.
    8. Guo, Mingyang & Chen, Miao & Yuan, Lihao & Zhang, Zhihui & Lv, Jia & Cai, Zhiyong, 2025. "Investigation of ship collision accident risk factors using BP-DEMATEL method based on HFACS-SCA," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    9. Yongcui Lan & Jinliang Wang & Wenying Hu & Eldar Kurbanov & Janine Cole & Jinming Sha & Yuanmei Jiao & Jingchun Zhou, 2023. "Spatial pattern prediction of forest wildfire susceptibility in Central Yunnan Province, China based on multivariate data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 565-586, March.
    10. Canepa,Alessandra & Drogo,Federico, 2019. "Wildfire Crime and Social Vulnerability in Italy: A Panel Investigation," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202005, University of Turin.
    11. Amjaad T. Altakhaineh & Rula Alrawashdeh & Jiafeng Zhou, 2024. "Machine Learning-Aided Dual-Function Microfluidic SIW Sensor Antenna for Frost and Wildfire Detection Applications," Energies, MDPI, vol. 17(20), pages 1-27, October.
    12. Yang Zhang & Samsung Lim & Jason John Sharples, 2017. "Wildfire occurrence patterns in ecoregions of New South Wales and Australian Capital Territory, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 415-435, May.
    13. José Ramón Rodríguez‐Pérez & Celestino Ordóñez & Javier Roca‐Pardiñas & Daniel Vecín‐Arias & Fernando Castedo‐Dorado, 2020. "Evaluating Lightning‐Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1418-1437, July.
    14. Abolfazl Jaafari & Omid Rahmati & Eric K. Zenner & Davood Mafi-Gholami, 2022. "Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 457-473, October.
    15. Xiaowei Li & Gang Zhao & Xiubo Yu & Qiang Yu, 2014. "A comparison of forest fire indices for predicting fire risk in contrasting climates in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1339-1356, January.
    16. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    17. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
    18. Canepa, Alessandra & Drogo, Federico, 2021. "Wildfire crime, apprehension and social vulnerability in Italy," Forest Policy and Economics, Elsevier, vol. 122(C).
    19. Romanovs Andrejs & Lektauers Arnis & Soshko Oksana & Zelentsov Viacheslav, 2013. "Models of the Monitoring and Control of Natural and Technological Objects," Information Technology and Management Science, Sciendo, vol. 16(1), pages 121-130, December.
    20. Rafaello Bergonse & Sandra Oliveira & Ana Gonçalves & Sílvia Nunes & Carlos Câmara & José Luis Zêzere, 2021. "A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2545-2573, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1723-1743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.