IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05397-6.html
   My bibliography  Save this article

Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran

Author

Listed:
  • Abolfazl Jaafari

    (Agricultural Research, Education, and Extension Organization (AREEO))

  • Omid Rahmati

    (AREEO)

  • Eric K. Zenner

    (The Pennsylvania State University)

  • Davood Mafi-Gholami

    (Shahrekord University)

Abstract

The aim of this study was to improve our understanding of factors that affect the spatial distribution of wildfire occurrences at the regional scale. We employed the random forest, boosted regression tree, and genetic algorithm rule-set production models to assess the spatial interplay between fire events and climate, topography, and anthropogenic factors in order to characterize wildfire occurrence in the Zagros eco-region of western Iran. We constructed a geospatial database using the historical fires from the period 2007–2020 and topography, climate, and human related factors. The results demonstrated that human activities (i.e., land use and distance from the settlements and roads) contributed 45% to the probability model of wildfire occurrence in the study region. The models ranked the climate factors (rainfall, temperature, and wind effect) as the second most influential drivers of fire occurrences, whereas topographic features (slope, elevation, and aspect) did not significantly influence fire probability in the landscape. Overall model performance was assessed with the area under the receiver operating characteristic (AUROC) method that showed the superior performance of the RF model in the training phase (AUROC = 0.92) and in its ability to predict upcoming fires (AUROC = 0.90). The insights obtained from this research can bring into focus both the locations and the types of suppression policies that are required to alleviate the effects of the upcoming wildfires in the early twenty-first century.

Suggested Citation

  • Abolfazl Jaafari & Omid Rahmati & Eric K. Zenner & Davood Mafi-Gholami, 2022. "Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 457-473, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05397-6
    DOI: 10.1007/s11069-022-05397-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05397-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05397-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuvieco, Emilio & Aguado, Inmaculada & Yebra, Marta & Nieto, Héctor & Salas, Javier & Martín, M. Pilar & Vilar, Lara & Martínez, Javier & Martín, Susana & Ibarra, Paloma & de la Riva, Juan & Baeza, J, 2010. "Development of a framework for fire risk assessment using remote sensing and geographic information system technologies," Ecological Modelling, Elsevier, vol. 221(1), pages 46-58.
    2. Giuseppina Spano & Mario Elia & Onofrio Cappelluti & Giuseppe Colangelo & Vincenzo Giannico & Marina D’Este & Raffaele Lafortezza & Giovanni Sanesi, 2021. "Is Experience the Best Teacher? Knowledge, Perceptions, and Awareness of Wildfire Risk," IJERPH, MDPI, vol. 18(16), pages 1-12, August.
    3. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özer Akyürek, 2023. "Spatial and temporal analysis of vegetation fires in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1105-1124, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    2. Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Robert G. Ribe & Max Nielsen-Pincus & Bart R. Johnson & Chris Enright & David Hulse, 2022. "The Consequential Role of Aesthetics in Forest Fuels Reduction Propensities: Diverse Landowners’ Attitudes and Responses to Project Types, Risks, Costs, and Habitat Benefits," Land, MDPI, vol. 11(12), pages 1-38, November.
    4. Nives Grasso & Andrea Maria Lingua & Maria Angela Musci & Francesca Noardo & Marco Piras, 2018. "An INSPIRE-compliant open-source GIS for fire-fighting management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 623-637, January.
    5. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    6. Hamed Adab & Kasturi Devi Kanniah & Karim Solaimani, 2021. "Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 253-283, August.
    7. Yongcui Lan & Jinliang Wang & Wenying Hu & Eldar Kurbanov & Janine Cole & Jinming Sha & Yuanmei Jiao & Jingchun Zhou, 2023. "Spatial pattern prediction of forest wildfire susceptibility in Central Yunnan Province, China based on multivariate data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 565-586, March.
    8. Yang Zhang & Samsung Lim & Jason John Sharples, 2017. "Wildfire occurrence patterns in ecoregions of New South Wales and Australian Capital Territory, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 415-435, May.
    9. José Ramón Rodríguez‐Pérez & Celestino Ordóñez & Javier Roca‐Pardiñas & Daniel Vecín‐Arias & Fernando Castedo‐Dorado, 2020. "Evaluating Lightning‐Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1418-1437, July.
    10. Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    11. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    12. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
    13. Ali Akbar JAFARZADEH & Ali MAHDAVI & Heydar JAFARZADEH, 2017. "Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(8), pages 370-380.
    14. Rafaello Bergonse & Sandra Oliveira & Ana Gonçalves & Sílvia Nunes & Carlos Câmara & José Luis Zêzere, 2021. "A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2545-2573, April.
    15. Olga M. Lozano & Michele Salis & Alan A. Ager & Bachisio Arca & Fermin J. Alcasena & Antonio T. Monteiro & Mark A. Finney & Liliana Del Giudice & Enrico Scoccimarro & Donatella Spano, 2017. "Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1898-1916, October.
    16. Faisal, Abdullah Al & Kafy, Abdulla - Al & Afroz, Farzana & Rahaman, Zullyadini A., 2023. "Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal's tiger conservation zones," Ecological Modelling, Elsevier, vol. 476(C).
    17. André Padrão & Lia Duarte & Ana Cláudia Teodoro, 2022. "A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa," Land, MDPI, vol. 11(7), pages 1-21, July.
    18. De Angelis, Antonella & Bajocco, Sofia & Ricotta, Carlo, 2012. "Modelling the phenological niche of large fires with remotely sensed NDVI profiles," Ecological Modelling, Elsevier, vol. 228(C), pages 106-111.
    19. Calkin, David C. & Finney, Mark A. & Ager, Alan A. & Thompson, Matthew P. & Gebert, Krista M., 2011. "Progress towards and barriers to implementation of a risk framework for US federal wildland fire policy and decision making," Forest Policy and Economics, Elsevier, vol. 13(5), pages 378-389, June.
    20. Sarkawt G. Salar & Arsalan Ahmed Othman & Sabri Rasooli & Salahalddin S. Ali & Zaid T. Al-Attar & Veraldo Liesenberg, 2022. "GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(10), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05397-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.