IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i7d10.1007_s11069-024-06457-9.html
   My bibliography  Save this article

Forest fire mapping: a comparison between GIS-based random forest and Bayesian models

Author

Listed:
  • Farzaneh Noroozi

    (Shiraz University)

  • Gholamabbas Ghanbarian

    (Shiraz University)

  • Roja Safaeian

    (Shiraz University)

  • Hamid Reza Pourghasemi

    (Shiraz University)

Abstract

In recent decades, fires in natural ecosystems, particularly forests and rangelands, have emerged as a significant threat. To address this challenge, our study aims to identify and prioritize forest fire-prone areas while highlighting key environmental and anthropogenic factors contributing to forest fires in Iran’s Firouzabad region, Fars province. We compiled a forest fire incident map using data from the Data Center of the Natural Resources Department in Fars province, cross-referenced with field surveys. We examined 80 forest fire sites, randomly divided into a “training dataset” (70%) and a “validation dataset” (30%). We created “Forest Fire Susceptibility” (FFS) maps using GIS-based Bayesian and Random Forest (RF) methodologies, incorporating twelve unique environmental and human-induced variables. The performance of these methodologies was evaluated using the “Area Under the Curve-AUC.” RF outperformed the Bayesian model with AUC scores of 0.876 and 0.807, respectively. The RF model identified 37.86% of the area as having a high fire risk, compared to the Bayesian model’s estimate of 48.46%. Key factors influencing fire occurrences included elevation, mean annual precipitation, distance to roads, and mean annual temperature. Conversely, variables such as slope direction, topographic wetness index, and slope percent had a lesser impact. Given the presence of at-risk flora and fauna species in the area, our findings provide essential tools for pinpointing high fire susceptibility zones, aiding regional authorities in implementing preventive measures to mitigate fire hazards in forest ecosystems. In conclusion, our methodologies allow for the rapid creation of contemporary fire susceptibility maps based on fresh data.

Suggested Citation

  • Farzaneh Noroozi & Gholamabbas Ghanbarian & Roja Safaeian & Hamid Reza Pourghasemi, 2024. "Forest fire mapping: a comparison between GIS-based random forest and Bayesian models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6569-6592, May.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06457-9
    DOI: 10.1007/s11069-024-06457-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06457-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06457-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    2. Chaoxue Tan & Zhongke Feng, 2023. "Mapping Forest Fire Risk Zones Using Machine Learning Algorithms in Hunan Province, China," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    3. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    4. Abdullah Al Saim & Mohamed H. Aly, 2022. "Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA," Geographies, MDPI, vol. 2(1), pages 1-17, January.
    5. Herawati, Hety & Santoso, Heru, 2011. "Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia," Forest Policy and Economics, Elsevier, vol. 13(4), pages 227-233, April.
    6. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    3. Sarkawt G. Salar & Arsalan Ahmed Othman & Sabri Rasooli & Salahalddin S. Ali & Zaid T. Al-Attar & Veraldo Liesenberg, 2022. "GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(10), pages 1-31, May.
    4. Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
    5. Ghafar Salavati & Ebrahim Saniei & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    6. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    7. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    8. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    9. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    10. Remzi Eker & Tunahan Çınar & İsmail Baysal & Abdurrahim Aydın, 2024. "Remote sensing and GIS-based inventory and analysis of the unprecedented 2021 forest fires in Türkiye’s history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10687-10707, September.
    11. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    12. Hamed Adab & Kasturi Devi Kanniah & Karim Solaimani, 2021. "Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 253-283, August.
    13. Moung-Jin Lee & Wonkyong Song & Saro Lee, 2015. "Habitat Mapping of the Leopard Cat ( Prionailurus bengalensis ) in South Korea Using GIS," Sustainability, MDPI, vol. 7(4), pages 1-21, April.
    14. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    15. Miqueias Lima Duarte & Tatiana Acácio Silva & Jocy Ana Paixão Sousa & Amazonino Lemos Castro & Roberto Wagner Lourenço, 2025. "Application of a hybrid fuzzy inference system to map the susceptibility to fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 1117-1141, January.
    16. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    17. Abolfazl Jaafari & Omid Rahmati & Eric K. Zenner & Davood Mafi-Gholami, 2022. "Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 457-473, October.
    18. Jones, Sara Sharon & Matsala, Maksym & Delin, Emily Viola & Subramanian, Narayanan & Nilsson, Urban & Holmström, Emma & Drobyshev, Igor, 2025. "Forest structure, roads and soil moisture provide realistic predictions of fire spread in modern Swedish landscape," Ecological Modelling, Elsevier, vol. 499(C).
    19. Erlis Saputra, 2019. "Beyond Fires and Deforestation: Tackling Land Subsidence in Peatland Areas, a Case Study from Riau, Indonesia," Land, MDPI, vol. 8(5), pages 1-24, April.
    20. Mehmet Cetin & Özge Isik Pekkan & Mehtap Ozenen Kavlak & Ilker Atmaca & Suhrabuddin Nasery & Masoud Derakhshandeh & Saye Nihan Cabuk, 2023. "GIS-based forest fire risk determination for Milas district, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2299-2320, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06457-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.