IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p678-d1618516.html
   My bibliography  Save this article

Machine Learning Method Application to Detect Predisposing Factors to Open-Pit Landslides: The Sijiaying Iron Mine Case Study

Author

Listed:
  • Jiang Li

    (School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Zhuoying Tan

    (School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Naigen Tan

    (School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Aboubakar Siddique

    (School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jianshu Liu

    (School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Fenglin Wang

    (Hebei Iron & Steel Group, Luanxian Sijiaying Iron Mine Co., Ltd., Tangshan 063700, China)

  • Wantao Li

    (Hebei Iron & Steel Group, Luanxian Sijiaying Iron Mine Co., Ltd., Tangshan 063700, China)

Abstract

Slope stability and landslide analysis in open-pit mines present significant engineering challenges due to the complexity of predisposing factors. The Sijiaying Iron Mine has an annual production capacity of 21 million tons, with a mining depth reaching 330 m. Numerous small-scale landslides have occurred in the shallow areas. This study identifies four key factors contributing to landslides: topography, engineering geology, ecological environment, and mining engineering. These factors encompass both microscopic and macroscopic geological aspects and temporal surface displacement rates. Data are extracted using ArcGIS Pro 3.0.2 based on slope units, with categorical data encoded via LabelEncoder. Multivariate polynomial expansion is applied for data coupling, and SMOTENC–TomekLinks is used for resampling landslide samples. A landslide sensitivity model is developed using the LightGBM algorithm, and SHAP is applied to interpret the model and assess the impact of each factor on landslide likelihood. The primary sliding factors at Sijiaying mine include distance from rivers, slope height, profile curvature, rock structure, and distance from faults. Safety thresholds for each factor are determined. This method also provides insights for global and individual slope risk assessment, generating high-risk factor maps to aid in managing and preventing slope instability in open-pit mines.

Suggested Citation

  • Jiang Li & Zhuoying Tan & Naigen Tan & Aboubakar Siddique & Jianshu Liu & Fenglin Wang & Wantao Li, 2025. "Machine Learning Method Application to Detect Predisposing Factors to Open-Pit Landslides: The Sijiaying Iron Mine Case Study," Land, MDPI, vol. 14(4), pages 1-27, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:678-:d:1618516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    2. Deliang Sun & Danlu Chen & Jialan Zhang & Changlin Mi & Qingyu Gu & Haijia Wen, 2023. "Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation," Land, MDPI, vol. 12(5), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    3. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    4. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    5. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    6. Farzaneh Noroozi & Gholamabbas Ghanbarian & Roja Safaeian & Hamid Reza Pourghasemi, 2024. "Forest fire mapping: a comparison between GIS-based random forest and Bayesian models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6569-6592, May.
    7. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    8. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    9. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    10. Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
    11. Moung-Jin Lee & Wonkyong Song & Saro Lee, 2015. "Habitat Mapping of the Leopard Cat ( Prionailurus bengalensis ) in South Korea Using GIS," Sustainability, MDPI, vol. 7(4), pages 1-21, April.
    12. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    13. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    14. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    15. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
    16. Amin Hosseinpoor Milaghardan & Rahim Ali Abbaspour & Mina Khalesian, 2020. "Evaluation of the effects of uncertainty on the predictions of landslide occurrences using the Shannon entropy theory and Dempster–Shafer theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 49-67, January.
    17. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    18. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    19. Jie Dou & Ali P. Yunus & Yueren Xu & Zhongfan Zhu & Chi-Wen Chen & Mehebub Sahana & Khabat Khosravi & Yong Yang & Binh Thai Pham, 2019. "Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 579-609, June.
    20. Yumin Tan & Dong Guo & Bo Xu, 2015. "A geospatial information quantity model for regional landslide risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1385-1398, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:678-:d:1618516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.