IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-022-05601-7.html
   My bibliography  Save this article

GIS-based forest fire risk determination for Milas district, Turkey

Author

Listed:
  • Mehmet Cetin

    (Ondokuz Mayis University)

  • Özge Isik Pekkan

    (Eskisehir Technical University)

  • Mehtap Ozenen Kavlak

    (Eskisehir Technical University)

  • Ilker Atmaca

    (Yozgat Bozok University)

  • Suhrabuddin Nasery

    (Eskisehir Technical University)

  • Masoud Derakhshandeh

    (Istanbul Gelisim University)

  • Saye Nihan Cabuk

    (Eskisehir Technical University)

Abstract

Forest fires are highly destructive phenomena in both ecological and economic terms. Therefore, it is significant to develop measures to detect and mitigate them. In this study, the forest fire risk map of the Milas district of Turkey was studied using geographical information systems and remote sensing methods. In the first part of the study, the forest fire risk map of the area was developed via a weighted overlay technique with analysis of stand characteristics, topographic features, distance from intermittent streams and built-up environment. According to the resulting forest fire risk map, extremely low-, low-, medium-, high- and extremely high-risk classes covered 0%, 0.5%, 65%, 30% and 0.5% of the forested areas in Milas district of Turkey, respectively. In the second part, the location of a major forest fire, which took place in 2007 in the study area, was determined using the normalized difference vegetation index, the normalized burn ratio, and the burn area index. When compared with the forest fire risk map, it was revealed that 45% of the burned areas in 2007 fell into the high-risk class, while 51% of it was from the extremely high-risk zones. Moreover, the forest risk map was compared with eleven forest fire cases between 2013 and 2019. The results show that eight of these fires took place in high-risk territories. According to these results, it was concluded that the created risk map coincides with the fire incidents.

Suggested Citation

  • Mehmet Cetin & Özge Isik Pekkan & Mehtap Ozenen Kavlak & Ilker Atmaca & Suhrabuddin Nasery & Masoud Derakhshandeh & Saye Nihan Cabuk, 2023. "GIS-based forest fire risk determination for Milas district, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2299-2320, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-022-05601-7
    DOI: 10.1007/s11069-022-05601-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05601-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05601-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Matthias M. Boer & Víctor Resco de Dios & Ross A. Bradstock, 2020. "Unprecedented burn area of Australian mega forest fires," Nature Climate Change, Nature, vol. 10(3), pages 171-172, March.
    4. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    2. Sarkawt G. Salar & Arsalan Ahmed Othman & Sabri Rasooli & Salahalddin S. Ali & Zaid T. Al-Attar & Veraldo Liesenberg, 2022. "GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(10), pages 1-31, May.
    3. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    4. Ghafar Salavati & Ebrahim Saniei & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    5. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    6. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    7. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    8. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    10. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    11. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    12. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    13. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    14. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    15. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    16. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    17. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    18. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    19. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    20. Sadiq Ullah & Mudassar Iqbal & Muhammad Waseem & Adnan Abbas & Muhammad Masood & Ghulam Nabi & Muhammad Atiq Ur Rehman Tariq & Muhammad Sadam, 2024. "Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System," Sustainability, MDPI, vol. 16(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-022-05601-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.