IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i3d10.1007_s11069-021-04554-7.html
   My bibliography  Save this article

A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime

Author

Listed:
  • Rafaello Bergonse

    (Universidade de Lisboa)

  • Sandra Oliveira

    (Universidade de Lisboa)

  • Ana Gonçalves

    (Universidade de Lisboa)

  • Sílvia Nunes

    (Instituto Dom Luiz (IDL), Universidade de Lisboa)

  • Carlos Câmara

    (Instituto Dom Luiz (IDL), Universidade de Lisboa)

  • José Luis Zêzere

    (Universidade de Lisboa)

Abstract

Wildfire susceptibility and hazard models based on drivers that change only on a multiyear timescale are considered of a structural nature. They ignore specific short-term conditions in any year and period within the year, especially summer, when most wildfire damage occurs in southern Europe. We investigate whether the predictive capacity of structural wildfire susceptibility and hazard models can be improved by integrating a seasonal dimension, expressed by three variables with yearly to seasonal timescales: (1) a meteorological index rating fuel flammability at the onset of summer; (2) the scarcity of fuel associated with the burned areas of the previous year, and (3) the excessive abundance of fuel in especially fire-prone areas that have not been burned in the previous ten years. We describe a new methodology for combining the structural maps with the seasonal variables, producing year-specific seasonal susceptibility and hazard maps. We then compare the structural and seasonal maps as to their capacity to predict burnt areas during the summer period in a set of eight independent years. The seasonal maps revealed a higher predictive capacity in 75% of the validation period, both for susceptibility and hazard, when only the highest class was considered. This percentage was reduced to 50% when the two highest classes were considered together. In some years, structural factors and other unconsidered variables probably exert a strong influence over the spatial pattern of wildfire incidence. These findings can complement existing structural data and improve the mapping tools used to define wildfire prevention and mitigation actions.

Suggested Citation

  • Rafaello Bergonse & Sandra Oliveira & Ana Gonçalves & Sílvia Nunes & Carlos Câmara & José Luis Zêzere, 2021. "A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2545-2573, April.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04554-7
    DOI: 10.1007/s11069-021-04554-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04554-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04554-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juli Pausas & Santiago Fernández-Muñoz, 2012. "Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime," Climatic Change, Springer, vol. 110(1), pages 215-226, January.
    2. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    3. Chuvieco, Emilio & Aguado, Inmaculada & Yebra, Marta & Nieto, Héctor & Salas, Javier & Martín, M. Pilar & Vilar, Lara & Martínez, Javier & Martín, Susana & Ibarra, Paloma & de la Riva, Juan & Baeza, J, 2010. "Development of a framework for fire risk assessment using remote sensing and geographic information system technologies," Ecological Modelling, Elsevier, vol. 221(1), pages 46-58.
    4. W. Matt Jolly & Mark A. Cochrane & Patrick H. Freeborn & Zachary A. Holden & Timothy J. Brown & Grant J. Williamson & David M. J. S. Bowman, 2015. "Climate-induced variations in global wildfire danger from 1979 to 2013," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nives Grasso & Andrea Maria Lingua & Maria Angela Musci & Francesca Noardo & Marco Piras, 2018. "An INSPIRE-compliant open-source GIS for fire-fighting management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 623-637, January.
    2. Melania Michetti & Mehmet Pinar, 2019. "Forest Fires Across Italian Regions and Implications for Climate Change: A Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 207-246, January.
    3. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    4. Bruno A. Aparício & João A. Santos & Teresa R. Freitas & Ana C. L. Sá & José M. C. Pereira & Paulo M. Fernandes, 2022. "Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    5. Aretano, Roberta & Semeraro, Teodoro & Petrosillo, Irene & De Marco, Antonella & Pasimeni, Maria Rita & Zurlini, Giovanni, 2015. "Mapping ecological vulnerability to fire for effective conservation management of natural protected areas," Ecological Modelling, Elsevier, vol. 295(C), pages 163-175.
    6. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    7. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    8. Alexandra D Syphard & Timothy Sheehan & Heather Rustigian-Romsos & Kenneth Ferschweiler, 2018. "Mapping future fire probability under climate change: Does vegetation matter?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    9. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    10. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    11. Ignasi Torre & Carlos Jaime-González & Mario Díaz, 2022. "Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    12. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
    13. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    14. Chao-Yuan Lin & Pei-Ying Shieh & Shao-Wei Wu & Po-Cheng Wang & Yung-Chau Chen, 2022. "Environmental indicators combined with risk analysis to evaluate potential wildfire incidence on the Dadu Plateau in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 287-313, August.
    15. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    16. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    17. Jake F. Weltzin & Julio L. Betancourt & Benjamin I. Cook & Theresa M. Crimmins & Carolyn A. F. Enquist & Michael D. Gerst & John E. Gross & Geoffrey M. Henebry & Rebecca A. Hufft & Melissa A. Kenney &, 2020. "Seasonality of biological and physical systems as indicators of climatic variation and change," Climatic Change, Springer, vol. 163(4), pages 1755-1771, December.
    18. Johnston, David W. & Önder, Yasin Kürşat & Rahman, Muhammad Habibur & Ulubaşoğlu, Mehmet A., 2021. "Evaluating wildfire exposure: Using wellbeing data to estimate and value the impacts of wildfire," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 782-798.
    19. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    20. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04554-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.