IDEAS home Printed from https://ideas.repec.org/a/bpj/statpp/v16y2025i1p63-86n1002.html
   My bibliography  Save this article

Spatio-Temporal Modeling of Violent Conflict and Fatality in Nigeria: A Point Process Modeling with SPDE Approach

Author

Listed:
  • Egbon Osafu Augustine

    (Institute of Mathematical and Computer Sciences, 28133 University of Sao Paulo , Avenida Trabalhador Sancarlense, 400 – Centro, Sao Carlos, SP, Brazil)

  • Gayawan Ezra

    (Department of Statistics, Federal University of Technology Akure, Akure, Ondo, Nigeria)

Abstract

For many decades, Nigeria has been plagued by a consistently high rate of violent events, resulting in countless fatalities and the displacement of citizens. This study aimed to model the spatio-temporal patterns of these events and the associated fatality to gain insight into the chain of events and provide a basis for swift and strategic intervention. To this end, a Cox point process model through the stochastic partial differential equation was adopted, taking into account the location randomness exhibited by violent events occurrence. The data analyzed was derived from the Uppsala Conflict Data Program – Georeferenced Event Dataset (UCDP-GED) version 22. The results revealed that violent events are particularly prevalent in the country’s northeast region, with a probability of 0.42 of at least one death occurring per violent event. These findings suggest a need for urgent intervention through informed policymaking, impeding the influx of illegal arms and ammunition in porous borders, and strategically tackling poverty.

Suggested Citation

  • Egbon Osafu Augustine & Gayawan Ezra, 2025. "Spatio-Temporal Modeling of Violent Conflict and Fatality in Nigeria: A Point Process Modeling with SPDE Approach," Statistics, Politics and Policy, De Gruyter, vol. 16(1), pages 63-86.
  • Handle: RePEc:bpj:statpp:v:16:y:2025:i:1:p:63-86:n:1002
    DOI: 10.1515/spp-2024-0028
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/spp-2024-0028
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/spp-2024-0028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:gig:afjour:v:45:y:2010:i:2:p:95-108 is not listed on IDEAS
    2. A. Baddeley & R. Turner & J. Møller & M. Hazelton, 2005. "Residual analysis for spatial point processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 617-666, November.
    3. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    4. Dorff, Cassy & Gallop, Max & Minhas, Shahryar, 2023. "Network Competition and Civilian Targeting during Civil Conflict," British Journal of Political Science, Cambridge University Press, vol. 53(2), pages 441-459, April.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Osafu Augustine Egbon & Omodolapo Somo-Aina & Ezra Gayawan, 2021. "Spatial Weighted Analysis of Malnutrition Among Children in Nigeria: A Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 495-523, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wagschal Uwe & Schleehauf Ronald & Reinbold Judith, 2025. "Editors’ Note," Statistics, Politics and Policy, De Gruyter, vol. 16(1), pages 1-4.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olamide Seyi Orunmoluyi & Ezra Gayawan & Samuel Manda, 2022. "Spatial Co-Morbidity of Childhood Acute Respiratory Infection, Diarrhoea and Stunting in Nigeria," IJERPH, MDPI, vol. 19(3), pages 1-16, February.
    2. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    3. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    4. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    5. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    6. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    7. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    9. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    10. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    11. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    12. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    13. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    14. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    15. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    16. Heinrich Lothar & Klein Stella, 2011. "Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 359-387, December.
    17. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    18. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    19. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    20. Ben Seiyon Lee & Murali Haran, 2025. "A class of models for large zero-inflated spatial data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 746-768, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:statpp:v:16:y:2025:i:1:p:63-86:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.