IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p1288-1322.html
   My bibliography  Save this article

Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions

Author

Listed:
  • Jesper Møller
  • Jakob G. Rasmussen

Abstract

There is a lack of point process models on linear networks. For an arbitrary linear network, we consider new models for a Cox process with an isotropic pair correlation function obtained in various ways by transforming an isotropic Gaussian process which is used for driving the random intensity function of the Cox process. In particular, we introduce three model classes given by log Gaussian, interrupted, and permanental Cox processes on linear networks, and consider for the first time statistical procedures and applications for parametric families of such models. Moreover, we construct new simulation algorithms for Gaussian processes on linear networks and discuss whether the geodesic metric or the resistance metric should be used for the kind of Cox processes studied in this paper.

Suggested Citation

  • Jesper Møller & Jakob G. Rasmussen, 2024. "Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1288-1322, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1288-1322
    DOI: 10.1111/sjos.12720
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12720
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1288-1322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.